Efflux Rate (efflux + rate)

Distribution by Scientific Domains


Selected Abstracts


Biokinetics of cadmium and zinc in a marine bacterium: Influences of metal interaction and pre-exposure

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2008
Dongshi Chen
Abstract The uptake kinetics of Cd and Zn, as influenced by metal interaction and metal pre-exposure, was examined in the gram-positive marine bacterium Bacillus firmus over a wide range of ambient free-Cd and -Zn concentrations. Bacteria were exposed to experimental media with different concentrations of Cd and Zn over a short, 15-min period. Zinc was found to be an effective competitive inhibitor of Cd uptake when the Zn2+ concentration ([Zn2+]) was increased to 10,8 M, whereas the Cd concentration (ranging from 10,9 to 10,6 M) did not affect Zn uptake. Inhibition of Cd uptake was dependent on [Zn2+] instead of the [Zn2+] to Cd2+ concentration ratio. Cadmium uptake at different [Zn2+] was significantly inhibited by a sulfur ligand (SH) blocker (N -ethylmaleimide) and a Ca-channel blocker (lanthanum), suggesting that competition between Cd and Zn most likely occurred via binding to the same transport sites. Cadmium efflux also was determined in the presence of different [Zn2+]. A biphasic depuration of Cd was found when [Zn2+] was greater than 10,8 M, whereas the calculated Cd efflux rate was independent of [Zn2+]. We further exposed B. firmus at different Cd or Zn concentrations for 24 h, then determined the metal uptake and efflux kinetics as well as the metallothionein (MT) induction. Both the Cd and Zn cellular concentrations increased with greater exposed metal concentration, but the MT levels and efflux were little affected by the elevated metal concentration. To some extent, however, the Cd uptake was reduced with an elevated intracellular Zn concentration, suggesting that at high Cd concentrations, intracellular Zn can suppress the Cd uptake in B. firmus. These results help to understand the interactions of metals in the marine environments. [source]


Low complex I content explains the low hydrogen peroxide production rate of heart mitochondria from the long-lived pigeon, Columba livia

AGING CELL, Issue 1 2010
Adrian J. Lambert
Summary Across a range of vertebrate species, it is known that there is a negative association between maximum lifespan and mitochondrial hydrogen peroxide production. In this report, we investigate the underlying biochemical basis of the low hydrogen peroxide production rate of heart mitochondria from a long-lived species (pigeon) compared with a short-lived species with similar body mass (rat). The difference in hydrogen peroxide efflux rate was not explained by differences in either superoxide dismutase activity or hydrogen peroxide removal capacity. During succinate oxidation, the difference in hydrogen peroxide production rate between the species was localized to the ,pH-sensitive superoxide producing site within complex I. Mitochondrial ,pH was significantly lower in pigeon mitochondria compared with rat, but this difference in ,pH was not great enough to explain the lower hydrogen peroxide production rate. As judged by mitochondrial flavin mononucleotide content and blue native polyacrylamide gel electrophoresis, pigeon mitochondria contained less complex I than rat mitochondria. Recalculation revealed that the rates of hydrogen peroxide production per molecule of complex I were the same in rat and pigeon. We conclude that mitochondria from the long-lived pigeon display low rates of hydrogen peroxide production because they have low levels of complex I. [source]


Dietary Na does not reduce dietary Cu uptake by juvenile rainbow trout

JOURNAL OF FISH BIOLOGY, Issue 2 2005
V. A. Kjoss
Rainbow trout Oncorhynchus mykiss fry in moderately hard water were exposed to control or high levels of dietary Cu (c. 6 and 580 ug Cu g food,1) at one of three levels of Na (1·5, 3·0 or 4·5%) in the diet, i.e. six experimental groups. Fish were fed a 4% body mass ration daily for 28 days and 10 individuals from each group were sampled every 7 days. Concentrations of Cu and Na were measured in the gills, liver, gut and remaining carcass of sampled fish. Growth was not affected and no consistent differences were found in mass, total lengths (LT) or indices of body condition among any of the groups on any sampling day. Copper concentration was significantly higher in tissues of Cu-exposed groups, although within treatment types (control Cu v. high Cu diet), it did not differ consistently among groups that received different levels of dietary Na. Tissue Na concentration did not differ among any of the groups and did not show any marked changes over time. In Cu-exposed groups, the proportion of total body Cu burden contained in the liver approximately doubled over time, from c. 30% on day 7 to c. 60% on day 28. In unexposed fish, the liver maintained c. 25% of the total Cu burden throughout the experiment. In contrast, the proportion of the total body Cu burden contained in the gut decreased somewhat over time in Cu-exposed fish, from c. 40% on day 7 to c. 30% on day 28, and remained fairly stable at c. 25,30% in control groups, i.e. approximately equal to liver values. In all groups, the carcass contained by far the largest portion of the total Na content (>80%). Measurements made 36 h post-feeding indicated that all six groups had much higher Na efflux relative to influx, suggesting that the fish were eliminating excess Na taken up from the diet, and differences in Na influx rates were small. Na efflux rate was significantly higher in the high Cu and high Na group than in the high Cu and low Na group. The results indicate that at the concentrations used in this experiment, dietary Na has little effect on dietary Cu uptake by juvenile rainbow trout, and dietary Cu has little effect on Na homeostasis. [source]


Species differences in Cl, affinity and in electrogenicity of SLC26A6-mediated oxalate/Cl, exchange correlate with the distinct human and mouse susceptibilities to nephrolithiasis

THE JOURNAL OF PHYSIOLOGY, Issue 5 2008
Jeffrey S. Clark
The mouse is refractory to lithogenic agents active in rats and humans, and so has been traditionally considered a poor experimental model for nephrolithiasis. However, recent studies have identified slc26a6 as an oxalate nephrolithiasis gene in the mouse. Here we extend our earlier demonstration of different anion selectivities of the orthologous mouse and human SLC26A6 polypeptides to investigate the correlation between species-specific differences in SLC26A6 oxalate/anion exchange properties as expressed in Xenopus oocytes and in reported nephrolithiasis susceptibility. We find that human SLC26A6 mediates minimal rates of Cl, exchange for Cl,, sulphate or formate, but rates of oxalate/Cl, exchange roughly equivalent to those of mouse slc2a6. Both transporters exhibit highly cooperative dependence of oxalate efflux rate on extracellular [Cl,], but whereas the K1/2 for extracellular [Cl,] is only 8 mm for mouse slc26a6, that for human SLC26A6 is 62 mm. This latter value approximates the reported mean luminal [Cl,] of postprandial human jejunal chyme, and reflects contributions from both transmembrane and C-terminal cytoplasmic domains of human SLC26A6. Human SLC26A6 variant V185M exhibits altered [Cl,] dependence and reduced rates of oxalate/Cl, exchange. Whereas mouse slc26a6 mediates bidirectional electrogenic oxalate/Cl, exchange, human SLC26A6-mediated oxalate transport appears to be electroneutral. We hypothesize that the low extracellular Cl, affinity and apparent electroneutrality of oxalate efflux characterizing human SLC26A6 may partially explain the high human susceptibility to nephrolithiasis relative to that of mouse. SLC26A6 sequence variant(s) are candidate risk modifiers for nephrolithiasis. [source]


Nitrogen budget for a low-salinity, zero-water exchange culture system: II.

AQUACULTURE RESEARCH, Issue 9 2008
Evaluation of isonitrogenous feeding of various dietary protein levels to Litopenaeus vannamei (Boone)
Abstract This study evaluated the effects of isonitrogenous feeding (60 g dietary protein per kilogram of body weight per day) using experimental feeds with 25%, 30%, 35% and 40% protein on the nitrogen budget, ammonia efflux rate, growth and survival of juvenile Litopenaeus vannamei raised in a low-salinity (4 g L,1) zero-water exchange culture system for 4 weeks. No significant differences in weight gain or instantaneous growth rate were observed between the dietary treatments with 35% and 40% protein after 3 weeks of study, or between treatments with 25% and 30% protein after 4 weeks of study. High mortality rates were observed for the 35% and 40% protein treatments, probably associated with high nitrite levels (4.80 and 7.36 mg NO2 -NL,1 respectively) in water. Among the various dietary treatments, 39,46.3% of feed nitrogen was converted to shrimp biomass, 32.8,38.0% and 14.4,39.9% remained within the system as organic and inorganic nitrogen, respectively, and 32.5,39.3% was unaccounted for. The results of the present study showed high nitrogen utilization efficiencies. However, as the nitrogen loading of the zero-water exchange system increased, so did the nitrogen excretion of shrimp, causing a deteriorated general condition of the shrimp, demonstrated by the low ammonia efflux rates recorded at the end of the trial. This study confirms that low-salinity closed systems are particularly susceptible to nitrogen loading. Thus, in these culture systems, low-protein feeds may perform better as they provide more carbon for heterotrophic bacteria and less nitrogen to be degraded and transformed into nitrogenous wastes. [source]


Nitrogen budget for a low salinity, zero-water exchange culture system: I. Effect of dietary protein level on the performance of Litopenaeus vannamei (Boone)

AQUACULTURE RESEARCH, Issue 8 2007
Mayra L. González-Félix
Abstract A 4-week study was conducted to evaluate the effects of different dietary protein levels (25%, 30%, 35% and 40%) on the growth and survival of juvenile Litopenaeus vannamei raised in a low salinity (4.6 g L,1), zero-water exchange culture system, as well as on the nitrogen budget and ammonia efflux rate. No significant differences were observed among the dietary treatments for final weight, weight gain or survival of shrimp, although the best performance was observed in the 25% protein treatment group. Both weight and survival decreased as the dietary protein increased. Significant differences (P<0.05) were observed in the ammonia concentration among dietary treatments during the first 2 weeks of the experiment. The highest concentration was measured in the 40% dietary protein treatment (5.88 mg NH4-N L,1). The nitrogen budget showed that the nitrogen loss increased as the dietary protein increased under the experimental conditions; the largest amount of nitrogen recovered as shrimp biomass (42.9%) was in the 25% protein treatment group, and the largest amount of unaccounted nitrogen (39.5%) was in the 40% protein treatment. Under these conditions, utilization of low-protein diets resulted in better performance, presumably because they provided more carbon for heterotrophic bacteria and reduced the nitrogen loading of the system. [source]


Effect of dietary protein level on growth, survival and ammonia efflux rate of Litopenaeus vannamei (Boone) raised in a zero water exchange culture system

AQUACULTURE RESEARCH, Issue 9 2005
Silvia Gómez-Jiménez
Abstract Litopenaeus vannamei postlarvae (1.96±0.07 g) were reared in a zero water exchange system for 25 days at 28°C. They were fed four commercial diets containing 25%, 30%, 35% or 40% crude protein in three replicate aquaria per dietary treatment. Total ammonia, nitrite, nitrate and pH were monitored weekly and total ammonia levels were additionally measured every 3 days using the flow injection analysis method. Total ammonia efflux rates were measured at days 0, 14 and 21, and survival and growth rates were recorded at the end of the experiment. No significant differences between water quality parameters such as temperature, salinity, dissolved oxygen and pH were found. Nitrite concentration remained low in all dietary treatments up to the second week increasing considerably from day 14 onwards suggesting the initiation of the nitrification process. Water total ammonia of all experimental groups exhibited a gradual increase up to day 13; however, following this time ammonia levels of all experimental groups decreased, probably due to either the action of bacterial nitrification or ammonia-N uptake by the animals. High ammonia efflux rates were recorded at day 14, especially after the first hour of immersion in the 25% protein group, but no significant changes occurred in any experimental group after 3 h. No significant differences in weight gain, final weight or survival of shrimp were observed under these experimental conditions. The importance of zero water exchange systems and their effects on the nitrogen metabolism of crustaceans are discussed. [source]


Effects of fire on surface carbon, energy and water vapour fluxes over campo sujo savanna in central Brazil

FUNCTIONAL ECOLOGY, Issue 6 2003
A. J. B. Santos
Summary 1Tower-based eddy covariance measurements were used to quantify the effect of fire on subsequent carbon dioxide fluxes and water and surface energy balance characteristics for campo sujo savanna located near Brasília in Central Brazil (15°56, S, 47°51, W). Campo sujo is a xeromorphic, open shrub savanna with very scattered but definitely visible shrubs and tree-like shrub elements. We studied two areas, one exposed to a prescribed fire late in the dry season, and a second that had not been burned for the previous 4 years. 2The fire on 22 September 1998 consumed an estimated 26 mol C m,2. Immediately after the fire, evapotranspiration rates decreased and the savanna became a stronger net source of CO2 to the atmosphere. This was attributed to the removal of the still slightly physiologically active grass layer and higher soil CO2 efflux rates as a consequence of elevated surface soil temperatures post-burning. 3On the commencement of the first rains in early October 1998, this situation was reversed, with the burned area rapidly becoming a stronger sink for CO2 and with higher evapotranspiration rates than a nearby unburned (control) area. This difference persisted throughout the wet season (until at least June 1999) and was attributable to greater physiological activity of the regrowing vegetation in the burned area. Early in the growing season, higher soil evaporation rates may also have contributed to faster water use by the previously burned area. 4Overall, we estimate an annual gross primary productivity for the burned area of 135 mol C m,2 year,1, with that for the unburned area being 106 mol C m,2 year,1. Estimated ecosystem respiration rates were more similar on an annual basis (96 and 82 mol C m,2 year,1 for the burned and unburned areas, respectively), giving rise to a substantially higher net ecosystem productivity for the previously burned area (38 vs 24 mol C m,2 year,1). 5Stimulation of photosynthetic activity in the rapid post-fire growth phase means that the negative effects of fire on the ecosystem carbon balance were more or less neutralized after only 12 months. [source]


High rates of net ecosystem carbon assimilation by Brachiara pasture in the Brazilian Cerrado

GLOBAL CHANGE BIOLOGY, Issue 5 2004
Alexandre J.B. Santos
Abstract To investigate the consequences of land use on carbon and energy exchanges between the ecosystem and atmosphere, we measured CO2 and water vapour fluxes over an introduced Brachiara brizantha pasture located in the Cerrado region of Central Brazil. Measurements using eddy covariance technique were carried out in field campaigns during the wet and dry seasons. Midday CO2 net ecosystem exchange rates during the wet season were ,40 ,mol m,2 s,1, which is more than twice the rate found in the dry season (,15 ,mol m,2 s,1). This was observed despite similar magnitudes of irradiance, air and soil temperatures. During the wet season, inferred rates of canopy photosynthesis did not show any tendency to saturate at high solar radiation levels, with rates of around 50 ,mol m,2 s,1 being observed at the maximum incoming photon flux densities of 2200 ,mol m,2 s,1. This contrasted strongly to the dry period when light saturation occurred with 1500 ,mol m,2 s,1 and with maximum canopy photosynthetic rates of only 20 ,mol m,2 s,1. Both canopy photosynthetic rates and night-time ecosystem CO2 efflux rates were much greater than has been observed for cerrado native vegetation in both the wet and dry seasons. Indeed, observed CO2 exchange rates were also much greater than has previously been reported for C4 pastures in the tropics. The high rates in the wet season may have been attributable, at least in part, to the pasture not being grazed. Higher than expected net rates of carbon acquisition during the dry season may also have been attributable to some early rain events. Nevertheless, the present study demonstrates that well-managed, productive tropical pastures can attain ecosystem gas exchange rates equivalent to fertilized C4 crops growing in the temperate zone. [source]


Nitrogen budget for a low-salinity, zero-water exchange culture system: II.

AQUACULTURE RESEARCH, Issue 9 2008
Evaluation of isonitrogenous feeding of various dietary protein levels to Litopenaeus vannamei (Boone)
Abstract This study evaluated the effects of isonitrogenous feeding (60 g dietary protein per kilogram of body weight per day) using experimental feeds with 25%, 30%, 35% and 40% protein on the nitrogen budget, ammonia efflux rate, growth and survival of juvenile Litopenaeus vannamei raised in a low-salinity (4 g L,1) zero-water exchange culture system for 4 weeks. No significant differences in weight gain or instantaneous growth rate were observed between the dietary treatments with 35% and 40% protein after 3 weeks of study, or between treatments with 25% and 30% protein after 4 weeks of study. High mortality rates were observed for the 35% and 40% protein treatments, probably associated with high nitrite levels (4.80 and 7.36 mg NO2 -NL,1 respectively) in water. Among the various dietary treatments, 39,46.3% of feed nitrogen was converted to shrimp biomass, 32.8,38.0% and 14.4,39.9% remained within the system as organic and inorganic nitrogen, respectively, and 32.5,39.3% was unaccounted for. The results of the present study showed high nitrogen utilization efficiencies. However, as the nitrogen loading of the zero-water exchange system increased, so did the nitrogen excretion of shrimp, causing a deteriorated general condition of the shrimp, demonstrated by the low ammonia efflux rates recorded at the end of the trial. This study confirms that low-salinity closed systems are particularly susceptible to nitrogen loading. Thus, in these culture systems, low-protein feeds may perform better as they provide more carbon for heterotrophic bacteria and less nitrogen to be degraded and transformed into nitrogenous wastes. [source]


Effect of dietary protein level on growth, survival and ammonia efflux rate of Litopenaeus vannamei (Boone) raised in a zero water exchange culture system

AQUACULTURE RESEARCH, Issue 9 2005
Silvia Gómez-Jiménez
Abstract Litopenaeus vannamei postlarvae (1.96±0.07 g) were reared in a zero water exchange system for 25 days at 28°C. They were fed four commercial diets containing 25%, 30%, 35% or 40% crude protein in three replicate aquaria per dietary treatment. Total ammonia, nitrite, nitrate and pH were monitored weekly and total ammonia levels were additionally measured every 3 days using the flow injection analysis method. Total ammonia efflux rates were measured at days 0, 14 and 21, and survival and growth rates were recorded at the end of the experiment. No significant differences between water quality parameters such as temperature, salinity, dissolved oxygen and pH were found. Nitrite concentration remained low in all dietary treatments up to the second week increasing considerably from day 14 onwards suggesting the initiation of the nitrification process. Water total ammonia of all experimental groups exhibited a gradual increase up to day 13; however, following this time ammonia levels of all experimental groups decreased, probably due to either the action of bacterial nitrification or ammonia-N uptake by the animals. High ammonia efflux rates were recorded at day 14, especially after the first hour of immersion in the 25% protein group, but no significant changes occurred in any experimental group after 3 h. No significant differences in weight gain, final weight or survival of shrimp were observed under these experimental conditions. The importance of zero water exchange systems and their effects on the nitrogen metabolism of crustaceans are discussed. [source]