Efficient Elimination (efficient + elimination)

Distribution by Scientific Domains


Selected Abstracts


Functionalized Self-Assembled InAs/GaAs Quantum-Dot Structures Hybridized with Organic Molecules

ADVANCED FUNCTIONAL MATERIALS, Issue 3 2010
Miaoxiang Chen
Abstract Low-dimensional III,V semiconductors have many advantages over other semiconductors; however, they are not particularly stable under physiological conditions. Hybridizing biocompatible organic molecules with advanced optical and electronic semiconductor devices based on quantum dots (QDs) and quantum wires could provide an efficient solution to realize stress-free and nontoxic interfaces to attach larger functional biomolecules. Monitoring the modifications of the optical properties of the hybrid molecule,QD systems by grafting various types of air-stable diazonium salts onto the QD structures surfaces provides a direct approach to prove the above concepts. The InAs/GaAs QD structures used in this work consist of a layer of surface InAs QDs and a layer of buried InAs QDs embedded in a wider-bandgap GaAs matrix. An enhancement in photoluminescence intensity by a factor of 3.3 from the buried QDs is achieved owing to the efficient elimination of the dangling bonds on the surface of the structures and to the decrease in non-radiative recombination caused by their surface states. Furthermore, a narrow photoluminescence band peaking at 1620,nm with a linewidth of 49 meV corresponding to the eigenstates interband transition of the surface InAs QDs is for the first time clearly observed at room temperature, which is something that has rarely been achieved without the use of such engineered surfaces. The experimental results demonstrate that the hybrid molecule,QD systems possess a high stability, and both the surface and buried QDs are very sensitive to changes in their surficial conditions, indicating that they are excellent candidates as basic sensing elements for novel biosensor applications. [source]


High-nickel insects and nickel hyperaccumulator plants: A review

INSECT SCIENCE, Issue 1 2009
Robert S. Boyd
Abstract Insects can vary greatly in whole-body elemental concentrations. Recent investigations of insects associated with Ni hyperaccumulator plants have identified insects with relatively elevated whole-body Ni levels. Evaluation of the limited data available indicates that a whole-body Ni concentration of 500 ,g Ni/g is exceptional: I propose that an insect species with a mean value of 500 ,g Ni/g or greater, in either larval/nymphal or adult stages, be considered a "high-Ni insect". Using the 500 ,g Ni/g criterion, 15 species of high-Ni insects have been identified to date from studies in Mpumalanga (South Africa), New Caledonia and California (USA). The highest mean Ni concentration reported is 3 500 ,g Ni/g for nymphs of a South African Stenoscepa species (Orthoptera: Pyrgomorphidae). The majority of high-Ni insects (66%) are heteropteran herbivores. Studies of high-Ni insect host preference indicate they are monophagous (or nearly so) on a particular Ni hyperaccumulator plant species. Much of the Ni in bodies of these insects is in their guts (up to 66%,75%), but elevated levels have also been found in Malpighian tubules, suggesting efficient elimination as one strategy for dealing with a high-Ni diet. Tissue levels of Ni are generally much lower than gut concentrations, but up to 1200 ,g Ni/g has been reported from exuviae, suggesting that molting may be another pathway of Ni elimination. One ecological function of the high Ni concentration of these insects may be to defend them against natural enemies, but to date only one experimental test has supported this "elemental defense" hypothesis. Community-level studies indicate that high-Ni insects mobilize Ni into food webs but that bioaccumulation of Ni does not occur at either plant-herbivore or herbivore-predator steps. Unsurprisingly, Ni bioaccumulation indices are greater for high-Ni insects compared to other insect species that feed on Ni hyperaccumulator plants. There is some evidence of Ni mobilization into food webs by insect visitors to flowers of Ni hyperaccumulator plants, but no high-Ni insect floral visitors have been reported. [source]


Gender divergent expression of Nqo1 in Sprague Dawley and August Copenhagen x Irish rats

JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 2 2008
Lisa M. Augustine
In the mammalian liver, there is an abundance of enzymes that function to enable the safe and efficient elimination of potentially harmful xenobiotics that are encountered through environmental exposure. A variety of factors, including gender and genetic polymorphisms, contribute to the variation between an individual system's detoxification capacity and thus its ability to protect itself against oxidative stress, cellular damage, cell death, etc. NAD(P)H:quinone oxidoreducatase 1 (Nqo1) is an antioxidant enzyme that plays a major role in reducing reactive electrophiles, thereby protecting cells from free-radical damage and oxidative stress. The goal of this study was to determine the gender-specific expression and inducibility of Nqo1 in the Sprague Dawley (SD) and August Copenhagen x Irish (ACI) rat strains, two strains that are commonly used in drug metabolism and drug-induced enzyme induction, toxicity, and carcinogenesis studies. Nqo1 mRNA, protein, and activity levels were determined through 96 h in SD and ACI males and females following treatment with known Nqo1 inducers oltipraz and butylated hydroxyanisole. In the SD strain, gender dimorphic expression of Nqo1 was observed with female mRNA, protein, and activity levels being significantly higher than in males. In contrast, there were minimal differences in Nqo1 mRNA, protein, and activity levels between ACI males and females. The gender dimorphic expression of Nqo1 in the SD rats was maintained through the course of induction, with female-induced levels greater than male-induced levels indicating that SD females may have a greater capacity to protect against oxidative stress and thus a decreased susceptibility to carcinogens. © 2008 Wiley Periodicals, Inc. J Biochem Mol Toxicol 22:93,100, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20224 [source]


Controlled application and removal of liposomal therapeutics: Effective elimination of pegylated liposomal doxorubicin by double-filtration plasmapheresis in vitro

JOURNAL OF CLINICAL APHERESIS, Issue 2 2010
Gerhard Pütz
Abstract Introduction: Nanoscale particle-based drug delivery systems like long circulating liposomal doxorubicin show unique pharmacokinetic properties and improved toxicity profiles. Liposomal doxorubicin accumulates in tumor tissue due to the enhanced permeation and retention effect, but only a small fraction of a total dose reaches the tumor site. Accumulation of liposomal doxorubicin is much faster in tumor sites than in certain organs where dose limiting adverse effects occur. Finding a way to detoxify the predominant part of a given dose, circulating in the blood after accumulation is completed, will presumably reduce severe side effects during chemotherapy. Methods: Elimination properties of therapeutic used pegylated liposomal doxorubicin (Doxil®/Caelyx®) and therapeutic used double-filtration plasmapheresis systems were evaluated in vitro and in reconstituted human blood. Results: Liposomes can be filtered by appropriate membranes without leakage of doxorubicin up to a pressure of 1 bar. At higher pressures, liposomes (,85 nm) may squeeze through much smaller pores without significant leakage of doxorubicin, whereas decreasing pore size to ,8 nm leads to increased leakage of doxorubicin. With therapeutic used apheresis systems, liposomal doxorubicin can be efficiently eliminated out of buffer medium and reconstituted human blood. No leakage of doxorubicin was detected, even when liposomes were circulating for 48 h in human plasma before apheresis. Conclusions: Convenient apheresis techniques are capable of a safe and efficient elimination of therapeutic used liposomal doxorubicin in an experimental model system. J. Clin. Apheresis, 2010. © 2010 Wiley-Liss, Inc. [source]


Effects of areca nut extracts on the functions of human neutrophils in vitro

JOURNAL OF PERIODONTAL RESEARCH, Issue 4 2000
Shan-Ling Hung
Aqueous extracts of ripe areca nut without husk (ripe ANE) and fresh and tender areca nut with husk (tender ANE) were examined for their effects on the defensive functions of human neutrophils. Exposure of peripheral blood neutrophils to ripe ANE and tender ANE inhibited their bactericidal activity against oral pathogens, including Actinobacillus actinomycetemcomitans and Streptococcus mutans, in a dose-dependent manner. At the concentrations tested, ripe and tender ANEs did not significantly affect the viability of neutrophils as verified by their ability to exclude trypan blue dye. However, both ANEs inhibited the production of bactericidal superoxide anion by neutrophils as measured by cytochrome c reduction. Moreover, the ripe ANE inhibited neutrophils more effectively than did tender ANE. Arecoline, a major alkaloid of areca nut, only exhibited an inhibitory effect on the functions of neutrophils when high concentrations were used. Therefore, arecoline could not be used to explain the inhibitory effects observed for ANEs. In conclusion, our results demonstrated that ripe and tender ANEs reduced the antibacterial activity and the superoxide anion production of neutrophils. This effect may contribute to a less efficient elimination of bacteria from the periodontal environment. Inhibition of the antimicrobial functions of neutrophils may alter the microbial ecology of the oral cavity, and this may be one possible mechanism by which areca nut compromises the oral health of users of areca nut products. [source]


Carbon-ion beam treatment induces systemic antitumor immunity against murine squamous cell carcinoma

CANCER, Issue 15 2010
Akinao Matsunaga MD
Abstract BACKGROUND: Carbon-ion beam (CIB) treatment is a powerful tool for controlling primary tumors in the clinical setting. However, to date, few clinical or experimental studies have investigated the effects of CIB treatment on tumor recurrence and antitumor immunity. METHODS: A multiple challenge test was performed using syngenic and nude mouse models of a poorly immunogenic squamous cell carcinoma cell line (SCCVII) after CIB treatment at a clinically available dose (77 kiloelectron volts [keV]/,m) to primary tumors. To further examine changes in antitumor immunity in this model, the authors used dendritic cell (DC)-based immunotherapy. RESULTS: In a syngenic model, CIB treatment itself resulted not only in efficient elimination of the primary tumor but also in a dramatic reduction of tumor formation after secondary tumor challenge at a contralateral site (P < .0001). Conversely, CIB treatment eliminated neither the primary nor the secondary tumor in nude mice. This antitumor effect produced by CIB treatment was enhanced significantly by combining it with DC immunotherapy (P = .0007). Combined CIB and DC treatment induced more intense cytolytic activity than CIB in a chromium-release assay. The third challenge tests, which included challenge with a third-party tumor cell line (FM3A) and effector depletion, revealed that the antitumor effects were the results of tumor-specific, long-lasting antitumor immunity through CD8-positive T lymphocytes. CONCLUSIONS: To the authors' knowledge, this is the first demonstration of strong antitumor immunity induced by CIB treatment in a dermal tumor, and this effect was enhanced by combining it with DC-based immunotherapy. The authors concluded that this combination warrants further investigation as a promising modality for the prevention of tumor recurrence. Cancer 2010. © 2010 American Cancer Society. [source]


Listeria monocytogenes infection in the face of innate immunity

CELLULAR MICROBIOLOGY, Issue 5 2009
Sinead C. Corr
Summary Pathogen recognition and induction of immune responses are important for efficient elimination of infection. However, pathogens such as Listeria monocytogenes employ strategies to evade or modulate these defences, thus creating a more favourable environment that ensures their survival and pathogenesis. New insights into these strategies, particularly those targeting innate immunity, have recently emerged. L. monocytogenes is initially detected at the cell surface or in phagosomes by toll-like receptor 2 and in the cytosol by nuclear oligodimerization domain (NOD)-like receptors (NOD1, NOD2) and NALP3 and Ipaf. It carries out N-deacetylation of peptidoglycan to avoid this detection by toll-like receptor 2 and NOD-like receptors. L. monocytogenes modulates transcription of host immunity genes through modification of histones and chromatin remodelling. Furthermore, L. monocytogenes has recently been shown to avoid autophagy and induce apoptosis in immune effector cells. In this review we discuss some of these strategies, which have provided new insights into the interaction between L. monocytogenes and the immune response at a crucial stage of infection. [source]