Efficient Clearance (efficient + clearance)

Distribution by Scientific Domains


Selected Abstracts


Remission induction chemotherapy induces in vivo caspase-dependent apoptosis in bone marrow acute myeloid leukemia blast cells and spares lymphocytes

CYTOMETRY, Issue 3 2006
J.-P. Vial
Abstract Background The goal of new therapeutic strategies is to adapt the treatment of acute myeloid leukemia (AML) patients to the prognostic and/or to the hematological response. Methods We analyzed in vivo apoptosis induction in blast cells and in lymphocytes of AML patients receiving remission induction treatment. Results We show, on 12 peripheral blood samples, that the increase of peripheral apoptotic blast cells cannot be considered as the earliest marker of the treatment efficiency, because the significant increase of apoptosis followed the white blood cell and the peripheral blast cell count reductions, probably due to an efficient clearance of circulating apoptotic cells. Furthermore, the study of 65 bone marrow samples at d15 showed that the treatment induced apoptosis of blast cells while sparing the lymphocytes. This apoptosis was evidenced both at the caspase and at the membrane levels using respectively fmk-VAD-FITC and Annexin V binding assays. We found that less than 50% of apoptosis, measured with the fmk-VAD-FITC, in the d15 residual bone marrow blast cells, correlated with lower disease-free survival probability. Conclusion More studies are needed in larger series and earlier during the remission induction treatment to confirm the possible prognostic significance of in vivo apoptosis induction. © 2006 International Society for Analytical Cytology [source]


IL-18, but not IL-12, is required for optimal cytokine production by influenza virus-specific CD8+ T cells

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 2 2007
Alice
Abstract The potent innate cytokines IL-12 and IL-18 are considered to be important antigen-independent mediators of IFN-, production by NK cells and T,lymphocytes. The present analysis addresses the physiological role of IL-12 and IL-18 in the generation of virus-specific CD8+ T cells. Both wt C57BL/6J (B6) mice and mice with disrupted IL-12p40 (IL-12p40,/,) or IL-18 (IL-18,/,) genes were infected with an influenza,A virus and the characteristics of the resultant epitope-specific CD8+ T cell responses were compared. While IL-12 appeared to have no notable effect on either virus growth or on CD8+ T cell response profiles, the absence of IL-18 was associated with delayed virus clearance from the lung and, despite normal numbers, a significantly reduced production of IFN-,, TNF-,, and IL-2 by epitope-specific CD8+ T cells. While this cytokine phenotype was broadly maintained in IL-12p40/IL-18 double-knockout mice, no evidence was seen for any additive effect. Together, our results suggest that IL-18, but not IL-12, induces optimal, antigen-specific production of key cytokines by CD8+ T cells for the efficient clearance of influenza virus from the lungs of infected mice. [source]


Folding and turnover of human iron regulatory protein 1 depend on its subcellular localization

FEBS JOURNAL, Issue 4 2007
Alain Martelli
Aconitases are iron,sulfur hydrolyases catalysing the interconversion of citrate and isocitrate in a wide variety of organisms. Eukaryotic aconitases have been assigned additional roles, as in the case of the metazoan dual activity cytosolic aconitase,iron regulatory protein 1 (IRP1). This human protein was produced in yeast mitochondria to probe IRP1 folding in this organelle where iron,sulfur synthesis originates. The behaviour of human IRP1 was compared with that of genuine mitochondrial (yeast or human) aconitases. All enzymes were functional in yeast mitochondria, but IRP1 was found to form dense particles as detected by electron microscopy. MS analysis of purified inclusion bodies evidenced the presence of human IRP1 and ,-ketoglutarate dehydrogenase complex component 1 (KGD1), one of the subunits of ,-ketoglutarate dehydrogenase. KGD1 triggered formation of the mitochondrial aggregates, because the latter were absent in a KGD1, mutant, but it did not efficiently do so in the cytosol. Despite the iron-binding capacity of IRP1 and the readily synthesis of iron,sulfur clusters in mitochondria, the dense particles were not iron-rich, as indicated by elemental analysis of purified mitochondria. The data show that proper folding of dual activity IRP1-cytosolic aconitase is deficient in mitochondria, in contrast to genuine mitochondrial aconitases. Furthermore, efficient clearance of the aggregated IRP1,KGD1 complex does not occur in the organelle, which emphasizes the role of molecular interactions in determining the fate of IRP1. Thus, proper folding of human IRP1 strongly depends on its cellular environment, in contrast to other members of the aconitase family. [source]


Fas and TNFR1, but not cytolytic granule-dependent mechanisms, mediate clearance of murine liver adenoviral infection,

HEPATOLOGY, Issue 1 2005
Marwan S. Abougergi
After intravenous injection of replication-deficient adenovirus, hepatocytes are transduced and express high levels of adenovirus-encoded genes. However, adenovirally encoded gene expression is ablated rapidly by CD8+ T-cell,dependent mechanisms. Thus, this model is suitable for examining intrahepatic cytotoxic T lymphocyte (CTL) effector mechanisms. In the present studies, recombinant adenoviruses encoding secreted (human apolipoprotein A-I) or intracellular (,-galactosidase) gene products were infused into mice with genetic deficiencies affecting the granule exocytosis-, Fas-, or tumor necrosis factor receptor 1 (TNFR1)-mediated pathways of CTL and natural killer cell effector function; the rates of clearance of adenovirus-encoded gene products were assessed. Clearance of secreted or intracellular adenoviral gene products was not delayed in perforin-deficient mice or dipeptidyl peptidase I-deficient mice, which fail to process and activate granzyme A or granzyme B. TNFR1-deficient mice also exhibited no delay in clearance of adenoviral gene products. However, adenoviral clearance from Fas-deficient mice was delayed, and such delays were much greater in mice deficient in both TNFR1 and Fas. In contrast, chimeric mice lacking both hepatic Fas and lymphocyte perforin function exhibited no greater delay in adenoviral clearance than chimeras deficient only in hepatic Fas expression. In conclusion, Fas-dependent mechanisms are required for efficient clearance of virally infected hepatocytes and, in Fas-deficient animals, TNFR1-dependent mechanisms provide an alternative mechanism for hepatic adenovirus clearance. In contrast, perforin- and granule protease,dependent cytotoxicity mechanisms play no apparent role in clearance of adenovirus from the liver. (HEPATOLOGY 2005;41:97,105.) [source]


Superficial exudates of neutrophils prevent invasion of Bacillus anthracis bacilli into abraded skin of resistant mice

INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 3 2008
Beth L. Hahn
Summary Skin window procedures in humans have shown rapid accumulation of neutrophils into the exuded fluids above abraded skin. The present study was undertaken to determine if similar epicutaneous neutrophil accumulation might explain the extreme resistance of HRS/J mice, both hairless (hr/hr) and haired (hr/+), to experimental cutaneous Bacillus anthracis Sterne infections on abraded skin. In this study, very early (6 h) biopsies demonstrated a lack of bacilli in skin from the HRS/J hr/hr mice, indicating that the organisms never did invade in these animals as opposed to early skin entry and then efficient clearance by host responses in the tissues. Touch preparations of either the inoculation filter or the skin surface revealed more inflammatory cells, fewer bacilli, and a higher percentage of cell-associated bacilli in the HRS/J hr/hr mice than in comparator strains. In the HRS/J mice, cyclophosphamide treatment or separation of inoculated spores from the inflammatory infiltrates by a second filter below both produced marked increases in the number of bacilli observed. Examination of inoculation filter specimens demonstrated ingestion of spores and bacilli by neutrophils inside the filter at 6 h after inoculation. These findings suggest that an early and vigorous inflammatory cell infiltrate in HRS/J mice attacks the inoculated organisms above the skin surface and does not allow them to invade the tissues below. [source]


Transglutaminase 2 limits murine peritoneal acute gout-like inflammation by regulating macrophage clearance of apoptotic neutrophils

ARTHRITIS & RHEUMATISM, Issue 10 2006
David M. Rose
Objective Monosodium urate monohydrate (MSU) crystals have remarkable inflammatory potential. However, gouty inflammation is spontaneously self-limited, an occurrence recognized since antiquity. Gouty synovitis is driven and sustained by neutrophil influx. Importantly, macrophage phagocytosis of apoptotic (but not necrotic) neutrophils is antiinflammatory. Therefore, we tested the hypothesis that efficient clearance of apoptotic neutrophils by macrophages is one of the factors that restrains the progression of gouty inflammation. Macrophage expression of transglutaminase 2 (TG2), a multifunctional protein with reciprocally regulated transamidation and purine nucleotide,binding activities, promotes apoptotic leukocyte uptake. In this study, we tested the specific role of macrophage TG2 expression in MSU crystal,induced inflammation. Methods We studied MSU crystal,induced peritonitis in TG2,/, and congenic TG2+/+ mice. We also studied the effects of TG2 on apoptotic cell uptake by cultured macrophages. Results TG2,/, mice demonstrated more progressive neutrophilic accumulation than did TG2+/+ mice, which was associated with delayed clearance of apoptotic neutrophils during MSU crystal,induced peritonitis. We observed defective phagocytosis of apoptotic leukocytes by TG2,/, peritoneal macrophages, which was corrected by soluble extracellular TG2. Transamidation catalytic activity of TG2 was not required to mediate macrophage uptake of apoptotic leukocytes. In contrast, the TG2 nucleotide binding site residue K173 was critical for this TG2 function. TG2 bound to GDP, ADP, or ATP (but not to GTP) rescued defective apoptotic leukocyte uptake by TG2,/, macrophages. Conclusion Enhancement of apoptotic neutrophil uptake by macrophage-derived TG2 restrains gout-like neutrophilic peritoneal inflammation. Differential binding of TG2 by purine nucleotides may contribute to clinical variability in the extent and duration of gouty inflammation. [source]