Ecological Responses (ecological + response)

Distribution by Scientific Domains


Selected Abstracts


Linking Spatial Pattern and Ecological Responses in Human-Modified Landscapes: The Effects of Deforestation and Forest Fragmentation on Biodiversity

GEOGRAPHY COMPASS (ELECTRONIC), Issue 4 2009
John A. Kupfer
Studies of forest loss and fragmentation provide clear examples of the linkages between ecological pattern and process. Reductions in forest area lead to higher within-patch extinction rates, the eventual loss of area-sensitive species, and declines in species richness and diversity. Forest loss also results in increased isolation of remnants, lower among-patch immigration rates, and less ,rescue' from surrounding populations. Specific responses, however, are sometimes counterintuitive because they depend on life-history tradeoffs that influence population dynamics and species co-existence in heterogeneous landscapes, not just forest remnants. Thus, while fragmentation generally favours r-selected, generalist strategies, such as high dispersal and a wide niche breadth, ecological outcomes may be confounded by species-specific responses to conditions in the human-dominated matrix and the ways in which forest edges shape cross-landscape movements. Given that pressures on global forestlands continue to intensify due to growing population sizes, economic pressures, and needs for space and resources, successfully maintaining or restoring species will necessitate a combination of short- and long-term actions that address both habitat protection and restoration. Doing so will require an interdisciplinary approach that gives adequate attention to the manners by which forest loss and fragmentation affect population dynamics through changes in forest area, isolation, habitat quality, matrix properties, and edge effects as well as the synergistic interactions of fragmentation with climate change, human-altered disturbance regimes, species interactions and other drivers of species population declines. [source]


Ecological responses to nutrients in streams and rivers of the Colorado mountains and foothills

FRESHWATER BIOLOGY, Issue 9 2010
WILLIAM M. LEWIS
Summary 1. Abundance and composition of periphyton and benthic macroinvertebrates were treated as potential nutrient response variables for 74 streams in montane Colorado. The streams ranged from unenriched to mildly enriched with nutrients (N, P). 2. The study showed no meaningful relationship between periphyton biomass accumulation and concentrations of total or dissolved forms of nitrogen or phosphorus. Nutrient concentrations were also unrelated to periphyton and macroinvertebrate richness, diversity and community composition. Macroinvertebrate communities did, however, show a strong positive relationship to periphyton abundance. 3. A positive response of periphyton biomass to increasing nutrient concentrations has been well documented over large ranges of nutrient concentrations. Our study suggests that the nutrient response is suppressed by other controlling factors on the lower limb of the nutrient response curve (i.e. at low nutrient concentrations); a quantitatively significant response occurs only in excess of a threshold beyond which nutrients become dominant over other controlling factors. This interpretation of the results is consistent with published meta-analyses showing lack of nutrient response for a high proportion of experimentally enriched periphyton communities, and division of responses between N and P for communities that do show growth in response to enrichment. 4. Grazing probably is not the key controlling variable for periphyton in Colorado mountain streams, given that the highest chlorophyll concentrations are associated with the highest abundances of macroinvertebrates. Modelling indicates that the initial amount of periphyton biomass at the start of the growing season, in conjunction with elevation-related length of the growing season and water temperature, explains most of the variation in periphyton accumulation among these streams, but there is a yet unexplained suppression of periphyton growth rates across all elevations. [source]


Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows

FRESHWATER BIOLOGY, Issue 1 2010
N. LEROY POFF
Summary 1.,In an effort to develop quantitative relationships between various kinds of flow alteration and ecological responses, we reviewed 165 papers published over the last four decades, with a focus on more recent papers. Our aim was to determine if general relationships could be drawn from disparate case studies in the literature that might inform environmental flows science and management. 2.,For all 165 papers we characterised flow alteration in terms of magnitude, frequency, duration, timing and rate of change as reported by the individual studies. Ecological responses were characterised according to taxonomic identity (macroinvertebrates, fish, riparian vegetation) and type of response (abundance, diversity, demographic parameters). A ,qualitative' or narrative summary of the reported results strongly corroborated previous, less comprehensive, reviews by documenting strong and variable ecological responses to all types of flow alteration. Of the 165 papers, 152 (92%) reported decreased values for recorded ecological metrics in response to a variety of types of flow alteration, whereas 21 papers (13%) reported increased values. 3.,Fifty-five papers had information suitable for quantitative analysis of ecological response to flow alteration. Seventy per cent of these papers reported on alteration in flow magnitude, yielding a total of 65 data points suitable for analysis. The quantitative analysis provided some insight into the relative sensitivities of different ecological groups to alteration in flow magnitudes, but robust statistical relationships were not supported. Macroinvertebrates showed mixed responses to changes in flow magnitude, with abundance and diversity both increasing and decreasing in response to elevated flows and to reduced flows. Fish abundance, diversity and demographic rates consistently declined in response to both elevated and reduced flow magnitude. Riparian vegetation metrics both increased and decreased in response to reduced peak flows, with increases reflecting mostly enhanced non-woody vegetative cover or encroachment into the stream channel. 4.,Our analyses do not support the use of the existing global literature to develop general, transferable quantitative relationships between flow alteration and ecological response; however, they do support the inference that flow alteration is associated with ecological change and that the risk of ecological change increases with increasing magnitude of flow alteration. 5.,New sampling programs and analyses that target sites across well-defined gradients of flow alteration are needed to quantify ecological response and develop robust and general flow alteration,ecological response relationships. Similarly, the collection of pre- and post-alteration data for new water development programs would significantly add to our basic understanding of ecological responses to flow alteration. [source]


A practical protocol to assess impacts of unplanned disturbance: a case study in Tuggerah Lakes Estuary, NSW

ECOLOGICAL MANAGEMENT & RESTORATION, Issue 2003
A. J. Underwood
Summary Environmental managers are often confronted with unplanned or accidental disturbances that may lead to environmental impacts. Procedures for detecting or measuring the size of such impacts are complicated because of the lack of data available before the disturbance and because of the intrinsic variability of most natural measures. Here, a protocol for detecting impacts is illustrated for single-measure variables (numbers of individual species) and multivariate measures (relative abundances of invertebrates in assemblages). The present paper describes a case concerning drainage of acidified water into an estuary due to construction of a drainage channel in an area of wetland for which there had been no prior investigations (i.e. no ,before' data). The spatial extent of any impact was also unknowable. Sampling was, therefore, designed to allow for impacts of only a few tens of metres (using control sites 50 m from the mouth of the channel) and impacts covering much larger areas (500 m and 1 km from the mouth of the channel). Invertebrates in the mud around the channel and in control sites were sampled in replicated cores and the amount of seagrass in each core was weighed. Average abundances of invertebrate animals and weights of seagrass were compared, as was variation among samples in potentially impacted and control sites (using univariate analyses of variance). Sets of species were compared using multivariate methods to test the hypothesis that there was an impact at one of the scales examined. In fact, there was no evidence for any sort of impact on the fauna or seagrasses; the disturbance was a short-term pulse without any obvious or sustained ecological response. One consequence of the study was that the local council was able to demonstrate no impact requiring remediation and no penalties were imposed for the unapproved construction of the channel. The implications of this type of study after an environmental disturbance are discussed. The present study identifies the need for clear definition of relevant hypotheses, coupled with rigorous planning of sampling and analyses, so that reliable answers are available to regulators and managers. [source]


Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows

FRESHWATER BIOLOGY, Issue 1 2010
N. LEROY POFF
Summary 1.,In an effort to develop quantitative relationships between various kinds of flow alteration and ecological responses, we reviewed 165 papers published over the last four decades, with a focus on more recent papers. Our aim was to determine if general relationships could be drawn from disparate case studies in the literature that might inform environmental flows science and management. 2.,For all 165 papers we characterised flow alteration in terms of magnitude, frequency, duration, timing and rate of change as reported by the individual studies. Ecological responses were characterised according to taxonomic identity (macroinvertebrates, fish, riparian vegetation) and type of response (abundance, diversity, demographic parameters). A ,qualitative' or narrative summary of the reported results strongly corroborated previous, less comprehensive, reviews by documenting strong and variable ecological responses to all types of flow alteration. Of the 165 papers, 152 (92%) reported decreased values for recorded ecological metrics in response to a variety of types of flow alteration, whereas 21 papers (13%) reported increased values. 3.,Fifty-five papers had information suitable for quantitative analysis of ecological response to flow alteration. Seventy per cent of these papers reported on alteration in flow magnitude, yielding a total of 65 data points suitable for analysis. The quantitative analysis provided some insight into the relative sensitivities of different ecological groups to alteration in flow magnitudes, but robust statistical relationships were not supported. Macroinvertebrates showed mixed responses to changes in flow magnitude, with abundance and diversity both increasing and decreasing in response to elevated flows and to reduced flows. Fish abundance, diversity and demographic rates consistently declined in response to both elevated and reduced flow magnitude. Riparian vegetation metrics both increased and decreased in response to reduced peak flows, with increases reflecting mostly enhanced non-woody vegetative cover or encroachment into the stream channel. 4.,Our analyses do not support the use of the existing global literature to develop general, transferable quantitative relationships between flow alteration and ecological response; however, they do support the inference that flow alteration is associated with ecological change and that the risk of ecological change increases with increasing magnitude of flow alteration. 5.,New sampling programs and analyses that target sites across well-defined gradients of flow alteration are needed to quantify ecological response and develop robust and general flow alteration,ecological response relationships. Similarly, the collection of pre- and post-alteration data for new water development programs would significantly add to our basic understanding of ecological responses to flow alteration. [source]


Late Miocene fish otoliths from the Colombacci Formation (Northern Apennines, Italy): implications for the Messinian ,Lago-mare' event

GEOLOGICAL JOURNAL, Issue 5 2006
Giorgio Carnevale
Abstract A fish otolith assemblage from the Messinian ,Lago-mare' deposits of the Colombacci Formation cropping out in the Montecalvo in Foglia Syncline, Marche, central Italy, is described. The assemblage displays a low diversity and consists of seven taxa belonging to three families: the Gobiidae, Myctophidae and Sciaenidae. Sciaenid otoliths are the most abundant elements representing 88% of the entire assemblage. The palaeoecological analysis reveals a coastal shallow marine environment strongly influenced by continental outflow. The low diversity and high abundance of the euryecious sciaenids are indicative of a very simplified food web, which probably represented an ecological response to the fluctuating environmental parameters and available food resources. The fish remains documented here provide an unambiguous evidence that normal marine conditions were present in the Mediterranean, at least in the upper part of the ,Lago-mare' event, and unquestionably demonstrate that the marine refilling preceded the Mio-Pliocene boundary. These findings clearly demonstrate that fishes, because of their mobility and migratory behaviour, represent a useful tool for the large-scale interpretation of the environmental conditions of the Messinian Mediterranean water body. The necessity of a new scenario of palaeoenvironmental evolution for the post-evaporitic Messinian of the Mediterranean is also discussed. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Broad-scale environmental response and niche conservatism in lacustrine diatom communities

GLOBAL ECOLOGY, Issue 5 2010
Joseph R. Bennett
ABSTRACT Aim, (1) To resolve theoretical debates regarding the role of environment versus dispersal limitation, the conservatism of niches across distances and the prevalence of environmental specialists in diatom communities. (2) To provide guidance on the use of diatom communities and other microbial analogues to analyse ecological response to environmental change. Location, Eight hundred and ninety-one lakes in five regional datasets from north-western Europe and four regional datasets from north-eastern North America. Methods, Lacustrine diatom communities were analysed at three scales: inter-continental, intra-continental and regional. Nested partial redundancy analyses (RDAs) were used to determine spatial versus environmental components of community variation. Weighted-averaging (WA) regression and calibration, as well as logistic and quadratic regressions, were used to detect niche conservatism and the prevalence of environmental specialists. Results, Community patterns indicate that dispersal limitation acts predominantly at the inter-continental scale, while at the regional (less than c. 1,000,000 km2) scale, a single environmental variable (pH) explains more than five times the community variation as spatial (dispersal-related) variables. In addition, pH niche components appear to be conserved at the inter-continental scale, and environmental specialization does not impose relative rarity, as specialists apparently readily disperse to suitable environments. Main conclusions, Analysis at multiple scales is clearly important in determining the influences of community variation. For diatom communities, dispersal limitation acts most strongly at the broadest scales, giving way to environment at the scales considered by most analyses. The availability of a wide variety of propagules with consistent niches across regions indicates that diatom communities reflect the succession of taxa according to local environmental conditions, rather than disequilibrium with the environment or adaptation of local populations. While multi-scale analyses must be undertaken for other groups to resolve debates over community drivers and determine appropriate scales for prediction, for diatoms (and probably other microbial communities), responses to environmental change can be inferred using analogue datasets from large geographic areas. [source]


The regional scale impact of land cover change simulated with a climate model

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 3 2002
Mei Zhao
Abstract A series of 17-year integrations using the NCAR CCM3 (at about 2.8° × 2.8° resolution) were performed to investigate the regional-scale impact of land cover change. Our aim was to determine the impact of historical land cover change on the regional-scale climate over the regions where most change occurred: Europe, India and China. The change from natural to current land cover was estimated using BIOME3 to predict the natural vegetation type, and then using remotely sensed data to estimate the locations where land cover had been changed through human activity. Results show statistically significant changes in the 15-year averaged 1000 hPa wind field, mean near-surface air temperature, maximum near-surface air temperature and the latent heat flux over the regions where land cover change was imposed. These changes disappeared if the land cover over a particular region was omitted, indicating that our results cannot be explained by model variability. An analysis of changes on an averaged monthly time scale showed large changes in the maximum daily temperature in (Northern Hemisphere) summer and little change in the minimum daily temperature, resulting in changes in the diurnal temperature range. The change in the diurnal temperature range could be positive or negative depending on region, time of year and the precise nature of the land cover changes. Our results indicate that the inclusion of land cover change scenarios in simulations of the 20th century may lead to improved results. The impact of land cover changes on regional climates also provides support for the inclusion of land surface models that can represent future land cover changes resulting from an ecological response to natural climate variability or increasing carbon dioxide. Copyright © 2002 Royal Meteorological Society. [source]


Interaction between macroinvertebrates, discharge and physical habitat in upland rivers

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue S1 2010
Michael J. Dunbar
Abstract 1.There is a need to relate changing river flows to ecological response, particularly using methods which do not require extensive new data for water bodies without historical data. This paper describes how local-scale habitat features and changing discharge appear to influence a macroinvertebrate-based biotic index. 2.The study used 87 time-series of river biomonitoring data from upland, wadeable streams with quasi-natural flow regimes across England and Wales. Twenty-seven of the sites were matched to a nearby flow gauging station, and historical, natural flows using a generalized rainfall-runoff model were synthesized for 60 sites. All sites were matched to a River Habitat Survey (RHS) within 1,km. 3.The data were analysed using multilevel linear regression, combining sample- and site-level characteristics as predictors. Common responses were assessed across sites, using the biotic index LIFE (Lotic Invertebrate index for Flow Evaluation), an average of abundance-weighted Flow Groups which indicate the relative preference among taxa for higher velocities with gravel/cobble substrates or slow velocities with finer substrates. The aim was to understand the influence of physical habitat on macroinvertebrate response to antecedent high and low flow magnitude. 4.There was a positive relationship between LIFE score calculated from spring and autumn samples and antecedent high (Q10) and low flows (Q95). The relationship between summer Q10 and autumn LIFE score was steeper than the relationship between winter Q10 and spring LIFE score. Bed and bank resectioning reduced overall LIFE and increased the steepness of the response of LIFE to low (Q95) flow. 5.The models derived may be used to guide environmental flow allocations and to quantify the relative influence of flow and physical habitat change on macroinvertebrate responses. The interaction between resectioning and low flow has particular implications for the conservation of macroinvertebrate taxa with requirements for faster flowing water. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Implications of Liebig's law of the minimum for the use of ecological indicators based on abundance

ECOGRAPHY, Issue 2 2005
J. G. Hiddink
Many ecological responses to environmental variables or anthropogenic agents are difficult and expensive to measure. Therefore it is attractive to describe such responses in terms of indicators that are easier to measure. In ecosystem management, indicators can be used to monitor spatial and temporal changes in an environmental feature. The aim of this paper is to show that it is important to take Liebig's law of the minimum into consideration to understand when it is appropriate or inappropriate to use ecological indicators based on abundance. When developing indicators that relate the abundance of an organism to an environmental factor, it is likely that this relationship will be polygonal rather than a simple linear relationship. The upper boundary of the distribution describes how abundance is limited by this factor, while the variation below the upper boundary is explained by situations when factors other than the factor of interest limit abundance. The variation below the upper boundary of the distribution means that the use of indicators to examine spatial patterns in the response of abundance to an environmental factor can be problematic. Thus, while abundance-based indicators can identify sites that are in a good condition, they are less useful to detect those affected by environmental degradation. In contrast, abundance-based ecological indicators may enable temporal monitoring of the impact of environmental factors, as it is expected that limiting factors are less variable in time than in space. In conclusion, when multiple factors are limiting, a significant correlation between an indicator and a variable is not enough to validate the status of a factor as an indicator. [source]


Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations

ECOLOGY LETTERS, Issue 3 2009
Jean Clobert
Abstract There is accumulating evidence that individuals leave their natal area and select a breeding habitat non-randomly by relying upon information about their natal and future breeding environments. This variation in dispersal is not only based on external information (condition dependence) but also depends upon the internal state of individuals (phenotype dependence). As a consequence, not all dispersers are of the same quality or search for the same habitats. In addition, the individual's state is characterized by morphological, physiological or behavioural attributes that might themselves serve as a cue altering the habitat choice of conspecifics. These combined effects of internal and external information have the potential to generate complex movement patterns and could influence population dynamics and colonization processes. Here, we highlight three particular processes that link condition-dependent dispersal, phenotype-dependent dispersal and habitat choice strategies: (1) the relationship between the cause of departure and the dispersers' phenotype; (2) the relationship between the cause of departure and the settlement behaviour and (3) the concept of informed dispersal, where individuals gather and transfer information before and during their movements through the landscape. We review the empirical evidence for these processes with a special emphasis on vertebrate and arthropod model systems, and present case studies that have quantified the impacts of these processes on spatially structured population dynamics. We also discuss recent literature providing strong evidence that individual variation in dispersal has an important impact on both reinforcement and colonization success and therefore must be taken into account when predicting ecological responses to global warming and habitat fragmentation. [source]


Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows

FRESHWATER BIOLOGY, Issue 1 2010
N. LEROY POFF
Summary 1.,In an effort to develop quantitative relationships between various kinds of flow alteration and ecological responses, we reviewed 165 papers published over the last four decades, with a focus on more recent papers. Our aim was to determine if general relationships could be drawn from disparate case studies in the literature that might inform environmental flows science and management. 2.,For all 165 papers we characterised flow alteration in terms of magnitude, frequency, duration, timing and rate of change as reported by the individual studies. Ecological responses were characterised according to taxonomic identity (macroinvertebrates, fish, riparian vegetation) and type of response (abundance, diversity, demographic parameters). A ,qualitative' or narrative summary of the reported results strongly corroborated previous, less comprehensive, reviews by documenting strong and variable ecological responses to all types of flow alteration. Of the 165 papers, 152 (92%) reported decreased values for recorded ecological metrics in response to a variety of types of flow alteration, whereas 21 papers (13%) reported increased values. 3.,Fifty-five papers had information suitable for quantitative analysis of ecological response to flow alteration. Seventy per cent of these papers reported on alteration in flow magnitude, yielding a total of 65 data points suitable for analysis. The quantitative analysis provided some insight into the relative sensitivities of different ecological groups to alteration in flow magnitudes, but robust statistical relationships were not supported. Macroinvertebrates showed mixed responses to changes in flow magnitude, with abundance and diversity both increasing and decreasing in response to elevated flows and to reduced flows. Fish abundance, diversity and demographic rates consistently declined in response to both elevated and reduced flow magnitude. Riparian vegetation metrics both increased and decreased in response to reduced peak flows, with increases reflecting mostly enhanced non-woody vegetative cover or encroachment into the stream channel. 4.,Our analyses do not support the use of the existing global literature to develop general, transferable quantitative relationships between flow alteration and ecological response; however, they do support the inference that flow alteration is associated with ecological change and that the risk of ecological change increases with increasing magnitude of flow alteration. 5.,New sampling programs and analyses that target sites across well-defined gradients of flow alteration are needed to quantify ecological response and develop robust and general flow alteration,ecological response relationships. Similarly, the collection of pre- and post-alteration data for new water development programs would significantly add to our basic understanding of ecological responses to flow alteration. [source]


Alkaloids may not be responsible for endophyte-associated reductions in tall fescue decomposition rates

FUNCTIONAL ECOLOGY, Issue 2 2010
Jacob A. Siegrist
Summary 1. ,Fungal endophyte , grass symbioses can have dramatic ecological effects, altering individual plant physiology, plant and animal community structure and function, and ecosystem processes such as litter decomposition and nutrient cycling. 2. ,Within the tall fescue (Schedonorus arundinaceus) , fungal endophyte (Neotyphodium coenophialum) symbiosis, fungal produced alkaloids are often invoked as the putative mechanism driving these ecological responses. Yet few measurements of alkaloids exist in the ecological literature. In this study, we quantified alkaloid levels in live, standing dead and decomposing endophyte-infected (E+) and ,free (E,) plant material and simultaneously evaluated the direct and indirect effects of endophyte presence on tall fescue decomposition. 3. ,Loline and ergot alkaloid levels were consistently high in live E+ (common toxic strain of N. coenophialum) tall fescue biomass throughout the sampling period (May,November 2007), whereas, E, live and standing dead material had non-detectable alkaloid concentrations. Standing dead E+ biomass had significantly reduced alkaloid levels (6,19x lower than the levels measured in the corresponding live E+ biomass) that were equivalent to E, live and dead for loline but were still somewhat higher than E, material for ergots. 4. ,In an effort to test the role of alkaloids in directly inhibiting decomposition, as has been suggested by previous studies, we conducted a litter bag experiment using green, alkaloid-laden E+ and alkaloid-free E, tall fescue plant material. We incubated E+ and E, litter bags in both E+ and E, tall fescue stands for 170 days, and measured mass loss, carbon and nitrogen content, and ergot and loline alkaloid concentrations over the incubation period. 5. ,Consistent with previous reports, both direct and indirect effects of endophyte presence on litter decomposition were observed: endophyte presence in the litter and surrounding microenvironment significantly reduced decomposition rates. Surprisingly, despite large differences in alkaloid content between E+ and E, litter from Day 0,Day 21 of the incubation, direct effects of the endophyte on litter decomposition, while significant, were relatively small (differences in mass loss between E+ and E, litter were never >3%). Alkaloids were gone from E+ material by day 56. 6. ,We propose that results from this study indicating alkaloids are largely absent in standing dead material (the typical input to the decomposition process), and that despite being present in our litter bag experiment, failed to produce large differences in mass loss between E+ and E, material questions the supposition that fungal produced alkaloids directly inhibit decomposition. Additional studies exploring the mechanisms behind the direct and indirect effects of endophytes on this ecosystem process are needed. [source]


Is the Sonoran Desert losing its cool?

GLOBAL CHANGE BIOLOGY, Issue 12 2005
Jeremy L. Weiss
Abstract Freezing temperatures strongly influence vegetation in the hottest desert of North America, in part determining both its overall boundary and distributions of plant species within. To evaluate recent variability of freezing temperatures in this context, minimum temperature data from weather stations in the Sonoran Desert are examined. Data show widespread warming trends in winter and spring, decreased frequency of freezing temperatures, lengthening of the freeze-free season, and increased minimum temperatures per winter year. Local land use and multidecadal modes of the global climate system such as the Pacific decadal oscillation and the Atlantic multidecadal oscillation do not appear to be principal drivers of this warming. Minimum temperature variability in the Sonoran Desert does, however, correspond to global temperature variability attributed to human-dominated global warming. With warming expected to continue at faster rates throughout the 21st century, potential ecological responses may include contraction of the overall boundary of the Sonoran Desert in the south-east and expansion northward, eastward, and upward in elevation, as well as changes to distributions of plant species within and other characteristics of Sonoran Desert ecosystems. Potential trajectories of vegetation change in the Sonoran Desert region may be affected or made more difficult to predict by uncertain changes in warm season precipitation variability and fire. Opportunities now exist to investigate ecosystem response to regional climate disturbance, as well as to anticipate and plan for continued warming in the Sonoran Desert region. [source]


Impacts of a Small Dam on Riverine Zooplankton

INTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 3 2008
Shuchan Zhou
Abstract In order to explore the temporal impacts of a small dam on riverine zooplankton, monthly samples were conducted from November 2005 to June 2006 in a reach of Xiangxi River, China, which is affected by a small hydropower plant. A total of 56 taxa of zooplankton were recorded during the study and rotifers were the most abundant group, accounting for 97% of total taxa, while the others were copepod nauplii and copepod adults. This study indicated that: (1) the small dam in the Xiangxi River study area created distinct physical and ecological conditions relative to free-flowing lotic reaches despite the constrained channel and small size of the dam; (2) the existence of the plant's small dam had a significant effect on the zooplankton community. In long periods of drought or dry seasons the effect of the dam on potamoplankton was more pronounced (e.g., November, February, March, and May). But the downfall or the connectivity of channel appeared to decrease the effect of small hydropower plants on riverine zooplankton (e.g., April). The present observation underscores the need for additional studies that provide more basic data on riverine zooplankton communities and quantify ecological responses to dam construction over longer time spans. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Hunting for large carnivore conservation

JOURNAL OF APPLIED ECOLOGY, Issue 6 2009
Adrian Treves
Summary 1. Carnivores are difficult to conserve because of direct and indirect competition with people. Public hunts are increasingly proposed to support carnivore conservation. This article reviews scientific evidence for the effectiveness of public hunts of large carnivores in attaining three common policy goals: stable carnivore populations, preventing conflict with carnivores (property damage and competition over game) and building public support for carnivore conservation. 2. Sustainable exploitation of stable wildlife populations has a solid, scientific foundation but the theory and its predictions must be adapted to complex patterns of carnivore behavioural ecology and population dynamics that demand years of landscape-level monitoring to understand fully. 3. A review of the evidence that hunting prevents property damage or reduces competition for game reveals large gaps in our understanding. Reducing the number of large carnivores to protect hunters' quarry species seems straightforward but we still know little about behavioural and ecological responses of the contested prey and sympatric meso-predators. For reducing property damage, the direct effect , numerical reduction in problematic individual carnivores , presents numerous obstacles, whereas the indirect effect , behavioural avoidance of humans by hunted carnivores , holds more promise. 4. Scientific measures of public support for carnivore-hunting policies are almost completely lacking, particularly measures of attitudes among hunters before and after controversial wildlife is designated as legal game species. Moreover, illegal killing of carnivores does not appear to diminish if they are designated as game. 5.Synthesis and applications. Sustainable hunting to maintain stable populations is well understood in theory but complex life histories of carnivores, and behavioural changes of hunters and the carnivores they stalk may result in unsustainable mortality for carnivores. The direct impact of hunting on carnivore damage to property is unclear and even doubtful given the inability or unwillingness of hunters to remove specific individuals selectively. However, hunters may indirectly deter carnivores from people and their property. The assumption that hunters will steward carnivores simply because they have in the past helped conserve other game species requires more study as preliminary results suggest it is incorrect. Policy-makers may achieve support for policy if they mesh utilitarian and preservationist values held by the general public. A number of opposed hypotheses should be disentangled before researchers confidently inform policy on sustainable hunting to prevent conflicts and build public support for carnivore conservation. [source]


PRELIMINARY STUDIES OF SEASONALITY, ECOLOGY, AND SPECIES COMPOSITION OF ULVOID ALGAL BLOOMS IN WASHINGTON STATE

JOURNAL OF PHYCOLOGY, Issue 2000
T.A. Nelson
Blooms of green macroalgae can devastate important finfish and shellfish habitats. Ulvaria obscura, a relatively unstudied green alga, is a major contributor to these blooms in the San Juan Islands, Washington State, USA. The biomass and productivity of this and other ulvoid algae were measured seasonally for two years. Experiments comparing the growth rates, responses to desiccation, photoacclimation, and grazer preference of U. obscura and Ulva fenestrata were conducted. Ulvaria blooms tended to occur in the subtidal while Ulva blooms were often intertidal. Both genera bloomed between late June and September. Despite their superficial similarity, Ulvaria and Ulva display markedly different physiological and ecological responses. Ulva was capable of faster growth, had higher rates of photosynthesis, and was more desiccation tolerant than Ulvaria. Ulvaria, however, appears to be more resistant to grazing than Ulva. [source]


Vehicles versus conservation of invertebrates on sandy beaches: mortalities inflicted by off-road vehicles on ghost crabs

MARINE ECOLOGY, Issue 3 2007
Thomas A. Schlacher
Abstract Sandy beaches face increasing anthropogenic pressures, with vehicle traffic being ecologically highly harmful. Ghost crabs (Fam. Ocypodidae) are conspicuous on many beaches, and they have been used as a bio-monitoring tool to measure the ecological responses to human disturbance. However, the mechanisms causing declines in crab numbers are unknown, yet conservation must target the actual impact mechanisms. Therefore, we quantified the magnitude and mechanisms of off-road vehicle (ORV) impacts on ghost crabs, addressing three key questions: (i) Does abundance of ghost crabs respond to traffic intensity?; (ii) Can burrows protect crabs from vehicles? and (iii) Can mortalities caused by vehicles contribute to population declines? ORV-impacts were measured on North Stradbroke Island (Australia) for Ocypode cordimanus and Ocypode ceratophthalma. Crab densities were significantly lower in areas subjected to heavy beach traffic, suggesting direct crushing by vehicles. Burrows only partially protect crabs against cars: all individuals buried shallow (5 cm) are killed by 10 vehicle passes. Mortality declines with depth of burrows, but remains considerable (10,30% killed) at 20 cm and only those crabs buried at least 30 cm are not killed by ORVs: these ,deep-living' crabs represent about half of the population. After crabs emerge at dusk they are killed in large numbers on the beach surface. A single vehicle can crush up to 0.75% of the intertidal population. While conservation measures should primarily regulate night traffic, our results also emphasise that the fossorial life habits of sandy beach animals cannot off-set the impacts caused by ORVs. [source]


Morphological and ecological responses to a conservation translocation of powan (Coregonus lavaretus) in Scotland

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 3 2010
E. C. Etheridge
Abstract 1.The establishment of refuge populations has become a common management tool for threatened fish species in recent years, yet the effects of translocation are not fully understood in a conservation context. 2.This paper examines the hypothesis that phenotypic changes have occurred during the formation of two refuge populations of the nationally rare powan (a freshwater fish species) which were established in Loch Sloy and Carron Valley Reservoir in Scotland. 3.Significant differences in head morphology, size and growth between the founder and refuge populations and between the two refuge populations were demonstrated. These changes are probably due to a combination of founder effects, intense selection and phenotypic plasticity. These changes can undermine the rationale behind the establishment of refuge populations. 4.The results call into question the usefulness of translocation as a conservation measure; however, there are times when this is the only viable management option available. The future of translocation and the validity of establishing refuge populations for powan conservation are discussed. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Mate-locating behaviour, habitat-use, and flight morphology relative to rainforest disturbance in an Afrotropical butterfly

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2009
DRIES BONTE
To cope with environmental constraints, organisms can show variation in phenotype, either by genetic adaptation or phenotypic plasticity. These patterns are especially pronounced in ecosystems that are under anthropogenic influence. Due to human-induced disturbances such as logging and deforestation, tropical forests comprise such a system. To date, most studies have dealt with ecological responses at the community level relative to forest disturbance or degradation. However, the evolutionary consequences of tropical forest deterioration on behaviour and functional morphology have received far less attention compared to temporal regions. From a resource-point of view, light conditions are essential for heliotherms such as butterflies. Because degradation of tropical cloud forests in the Taita Hills (Kenya) is very pronounced, the present study tested whether this induced changes in mate-location strategies, habitat-use, and functional flight morphology in a forest butterfly, Salamis parhassus. According to predictions from temperate regions, it was hypothesized that the species would change its mate location strategy from perching to patrolling in more disturbed forests, that this higher mobility results in a faster occupancy of light gaps, and that it accords with a higher wing loading within populations from undisturbed forests. These hypotheses were confirmed by field surveys and experiments. The present study demonstrates that degradation of tropical forests does not only affect communities (e.g. species richness), but also the behaviour and functional morphology of individual species. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 96, 830,839. [source]


Critical thresholds associated with habitat loss: a review of the concepts, evidence, and applications

BIOLOGICAL REVIEWS, Issue 1 2010
Trisha L. Swift
A major conservation concern is whether population size and other ecological variables change linearly with habitat loss, or whether they suddenly decline more rapidly below a "critical threshold" level of habitat. The most commonly discussed explanation for critical threshold responses to habitat loss focus on habitat configuration. As habitat loss progresses, the remaining habitat is increasingly fragmented or the fragments are increasingly isolated, which may compound the effects of habitat loss. In this review we also explore other possible explanations for apparently nonlinear relationships between habitat loss and ecological responses, including Allee effects and time lags, and point out that some ecological variables will inherently respond nonlinearly to habitat loss even in the absence of compounding factors. In the literature, both linear and nonlinear ecological responses to habitat loss are evident among simulation and empirical studies, although the presence and value of critical thresholds is influenced by characteristics of the species (e.g. dispersal, reproduction, area/edge sensitivity) and landscape (e.g. fragmentation, matrix quality, rate of change). With enough empirical support, such trends could be useful for making important predictions about species' responses to habitat loss, to guide future research on the underlying causes of critical thresholds, and to make better informed management decisions. Some have seen critical thresholds as a means of identifying conservation targets for habitat retention. We argue that in many cases this may be misguided, and that the meaning (and utility) of a critical threshold must be interpreted carefully and in relation to the response variable and management goal. Despite recent interest in critical threshold responses to habitat loss, most studies have not used any formal statistical methods to identify their presence or value. Methods that have been used include model comparisons using Akaike information criterion (AIC) or t -tests, and significance testing for changes in slope or for polynomial effects. The judicious use of statistics to help determine the shape of ecological relationships would permit greater objectivity and more comparability among studies. [source]