Home About us Contact | |||
EC50
Kinds of EC50 Terms modified by EC50 Selected AbstractsActivation of a calcium entry pathway by sodium pyrithione in the bag cell neurons of AplysiaDEVELOPMENTAL NEUROBIOLOGY, Issue 4 2004Ronald J. Knox Abstract The ability of sodium pyrithione (NaP), an agent that produces delayed neuropathy in some species, to alter neuronal physiology was accessed using ratiometric imaging of cytosolic free Ca2+ concentration ([Ca2+]i) in fura PE-filled cultured Aplysia bag cell neurons. Bath-application of NaP evoked a [Ca2+]i elevation in both somata and neurites with an EC50 of ,300 nM and a Hill coefficient of ,1. The response required the presence of external Ca2+, had an onset of 3,5 min, and generally reached a maximum within 30 min. 2-Methyl-sulfonylpyridine, a metabolite and close structural analog of NaP, did not elevate [Ca2+]i. Under whole-cell current-clamp recording, NaP produced a ,14 mV depolarization of resting membrane potential that was dependent on external Ca2+. These data suggested that NaP stimulates Ca2+ entry across the plasma membrane. To minimize the possibility that a change in cytosolic pH was the basis for NaP-induced Ca2+ entry, bag cell neuron intracellular pH was estimated with the dye 2,,7,-bis(carboxyethyl-5(6)-carboxy-fluorescein acetoxy methylester. Exposure of the neurons to NaP did not alter intracellular pH. The slow onset and sustained nature of the NaP response suggested that a cation exchange mechanism coupled either directly or indirectly to Ca2+ entry could underlie the phenomenon. However, neither ouabain, a Na+/K+ ATPase inhibitor, nor removal of extracellular Na+, which eliminates Na+/Ca2+ exchanger activity, altered the NaP-induced [Ca2+]i elevation. Finally, the possibility that NaP gates a Ca2+ -permeable ion channel in the plasma membrane was examined. NaP did not appear to activate two major forms of bag cell neuron Ca2+ -permeable ion channels, as Ca2+ entry was unaffected by inhibition of voltage-gated Ca2+ channels using nifedipine or by inhibition of a voltage-dependent, nonselective cation channel using a high concentration of tetrodotoxin. In contrast, two potential store-operated Ca2+ entry current inhibitors, SKF-96365 and Ni2+, attenuated NaP-induced Ca2+ entry. We conclude that NaP activates a slow, persistent Ca2+ influx in Aplysia bag cell neurons. © 2004 Wiley Periodicals, Inc. J Neurobiol 411,423, 2004 [source] Nonylphenol-induced cytosolic Ca2+ elevation and death in renal tubular cellsDRUG DEVELOPMENT RESEARCH, Issue 5 2009Jeng-Yu Tsai Abstract Nonylphenol is an environmental endocrine disrupter. The effect of nonylphenol on intracellular free Ca2+ levels ([Ca2+]i) and viability in Madin-Darby canine kidney (MDCK) cells was explored. Nonylphenol increased [Ca2+]i in a concentration-dependent manner (EC50,0.8,,M). Nonylphenol-induced Mn2+ entry demonstrated Ca2+ influx and removal of extracellular Ca2+ partly decreased the [Ca2+]i rise. The [Ca2+]i rise was inhibited by the protein kinase C activator, phorbol 13-myristate acetate (PMA) but not by L-type Ca2+ channel blockers. In Ca2+ -free medium, nonylphenol-induced [Ca2+]i rise was partly inhibited by pretreatment with 1,,M thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor). Conversely, nonylphenol pretreatment abolished thapsigargin-induced Ca2+ release. Nonylphenol-induced Ca2+ release was unaltered by inhibition of phospholipase C. At concentrations of 5,100,,M, nonylphenol killed cells in a concentration-dependent manner. The cytotoxic effect of 100,,M nonylphenol was not affected by preventing [Ca2+]i rises with BAPTA/AM. Collectively, this study shows that nonylphenol induced [Ca2+]i increase in MDCK cells via evoking Ca2+ entry through protein kinase C-regulated Ca2+ channels, and releasing Ca2+ from endoplasmic reticulum and other stores in a phospholipase C-independent manner. Nonylphenol also killed cells in a Ca2+ -independent fashion. Drug Dev Res, 2009. © 2009 Wiley-Liss, Inc. [source] Dynamics of P2X7 receptor pore dilation: Pharmacological and functional consequencesDRUG DEVELOPMENT RESEARCH, Issue 2-3 2001I.P. Chessell Abstract The biophysical and functional properties of the human P2X7 receptor, expressed recombinantly in HEK-293 cells or natively in THP-1 pro-monocytic cells, were investigated in the context of pore dilation and externalisation of mature interleukin 1, (IL1,). In HEK-293 cells, the agonist 2,- and 3,-O-(4-benzoylbenzoyl)-ATP (BzATP) caused concentration-dependent inward currents (EC50 59 ,M) and with prolonged application this agonist caused a gradual increase in inward current culminating in a plateau. This increase in current was associated with pore dilation, determined by intracellular accumulation of YO-PRO-1. BzATP displayed increased potency at the pore-dilated form of the P2X7 receptor (EC50 17 ,M), and positive correlations between apparent receptor density and speed of pore dilation were observed. A monoclonal antibody selectively blocked current mediated by the naïve receptor, while currents through pore-dilated receptors were not significantly affected, which together suggest a conformational change at the level of the receptor during the dilation event. The release of mature IL1, from THP-1 cells was independent of P2X7 -mediated cell lysis, as determined by study of lactate dehydrogenase release. Moreover, using conditions designed to minimise pore dilation (using buffers containing 2 mM Ca2+ and 1 mM Mg2+), BzATP caused significant release of IL1,, but without concomitant YO-PRO-1 accumulation, indicating pore dilation is not required for IL1, release. In addition, short (4-min) incubation of THP-1 cells with BzATP (terminated by enzymatic degradation of BzATP using apyrase) resulted in significant quantities of IL1, release some 60 min later, suggesting commitment of cells to release IL1, can be triggered with only brief receptor ligation. These findings suggest that receptor expression and ligation time are critical factors for selecting multiple functional states of P2X7. Drug Dev. Res. 53:60,65, 2001. © 2001 Wiley-Liss, Inc. [source] Characterization and expression of ATP P2X4 receptor from embryonic chick skeletal muscleDRUG DEVELOPMENT RESEARCH, Issue 1 2001Xuenong Bo Abstract Previous pharmacological experiments have indicated the existence of ATP P2X receptors in chick embryonic skeletal muscles. In this study we cloned a P2X4 -like cDNA encoding a protein of 385 amino acids, which shares 75% and 76% identity with rat and human P2X4 receptors, respectively. Functional studies of this cP2X4 receptor expressed in Xenopus oocytes showed that ATP induced a fast inward current, which was partially desensitized upon prolonged application of ATP. The ATP-induced currents were concentration-dependent, with an EC50 of 9.5 ,M. Adenosine 5,- O -(thio)triphosphate and 2-methylthioATP very weak agonists. ,,,-methyleneATP was almost inactive. In contrast to their potentiating effects on recombinant rat P2X4 receptors, both suramin and pyridoxalphosphate-6-azophenyl-2,,4,-disulfonic acid partially blocked ATP-induced currents. TrinitrophenylATP was able to block ATP-induced response completely, with an IC50 of 4.7 ,M. Northern blot and RT-PCR analysis showed that cP2X4 mRNAs were mainly expressed in skeletal muscle, brain, and gizzard of day 10 chick embryos. Lower levels of expression were also detected in liver, heart, and retina. Whole-mount in situ hybridization showed that cP2X4 mRNAs were expressed in the brain, spinal cord, notochord, gizzard, and skeletal muscle. The physiological functions of cP2X4 receptors in embryonic skeletal muscle remain unclear at present. Drug Dev. Res. 53:22,28, 2001. © 2001 Wiley-Liss, Inc. [source] Phosphate regulates uranium(VI) toxicity to Lemna gibba L. G3ENVIRONMENTAL TOXICOLOGY, Issue 1 2007Martin Mkandawire Abstract The influence of phosphate on the toxicity of uranium to Lemna gibba G3 was tested in semicontinuous culture with synthetic mine water developed as an analogue of surface water of two abandoned uranium mining and ore processing sites in Saxony, Germany. Six concentrations of uranium were investigated under five different supply regimes of PO43, at constant pH (7.0 ± 0.5) and alkalinity (7.0 ± 1.6 mg L,1 total CO32,). The results showed significant inhibition of specific growth rates in cultures exposed to the highest uranium concentrations (3500 and 7000 ,g U L,1) at lowest PO43, supply of 0.01 mg L,1. An increase of phosphate concentration from 0.01 to 8.0 mg L,1 resulted in an increase of EC50 from 0.9 ± 0.2 to 7.4 ± 1.9 mg L,1 (significant with Student's t test, P > 0.05). The accumulation of uranium in L. gibba increased exponentially with the increase in uranium concentration in cultures with 0.01 and 0.14 mg PO43, L,1. Accumulation also increased significantly when PO43, supply was increased from 0.14 to 1.36 mg PO43, L,1 for all uranium concentrations. However, as the supply of PO43, gradually increased from 1.36 to 8.0 mg PO43, L,1, uranium bioaccumulation increased slightly but insignificantly before leveling off. Uranium speciation modeling with PhreeqC geochemical code predicted increases in the proportions of uranyl phosphate species when PO43, concentrations increase in the media. Most of these uranyl phosphate species have a high probability of precipitation [saturation indices (SI) > 0.93]. Therefore, the alleviation of uranium toxicity to L. gibba with phosphates is due to interactions among components of the media, mainly uranyl and phosphate which results in precipitation. Consequently, bioavailable fractions of uranium to L. gibba are reduced. This might explain lack of consistent EC50 values for uranium to most aquatic organisms. © 2007 Wiley Periodicals, Inc. Environ Toxicol 22: 9,16, 2007. [source] Photodynamic therapy against cyanobacteriaENVIRONMENTAL TOXICOLOGY, Issue 1 2007M. Drábková Abstract This study explores the use of photosensitizers and reactive oxygen species (ROS) to limit growth of cyanobacteria. We chose 12 phthalocyanines, tetraphenol porphyrine, and methylene blue as compounds producing singlet oxygen. Hydrogen peroxide was chosen as another source of ROS. These compounds were tested using algal toxicity tests in microplates on three cultures of green algae (Pseudokirchneriella subcapitata, Scenedesmus quadricauda, and Chlorella kessleri) and on three cultures of cyanobacteria (Synechococcus nidulans, Microcystis incerta, and Anabaena sp.). Results indicate that photosensitizers and singlet oxygen could be highly toxic for some selected phytoplankton species. Green alga Scenedesmus quadricauda was highly sensitive (EC50 = 0.07 mg/L) to compounds producing singlet oxygen, although it was not sensitive to hydrogen peroxide, which was about 10 times more toxic for cyanobacteria. We conclude that the compounds producing hydroxyl radical species seems to be more promising to treat cyanobacterial blooms than the compounds producing the singlet oxygen. © 2007 Wiley Periodicals, Inc. Environ Toxicol 22: 112,115, 2007. [source] Toxicity reduction of metal pyrithiones by near ultraviolet irradiationENVIRONMENTAL TOXICOLOGY, Issue 4 2006Hideo Okamura Abstract Zinc pyrithione (ZnPT) or copper pyrithione (CuPT) have been effectively used as ship-antifouling agents, as an alternative to organotin compounds. Because of their instability in light and a lack of suitable analytical procedures, there is little data on their residue levels in environmental matrices. It is possible to investigate the fate of such compounds by toxicity alteration with certain treatments. The purpose of this study was to evaluate the degradation of pyrithiones through toxicity reduction by near ultraviolet (UV-A) irradiation. Metal pyrithiones dissolved in acetonitrile were irradiated with a UV-A lamp for 0, 0.5, 1, and 2 h, and were subjected to UV spectral measurement and toxicity evaluation using both sea urchin and freshwater rotifer bioassays. For the bioassays, photolyzed samples were dissolved in dimethyl sulfoxide after evaporation of the acetonitrile. The changes in UV spectra of photolyzed ZnPT or CuPT showed a time-dependent degradation, and the UV spectra at 2 h irradiation suggested substantial decomposition. Toxicities of ZnPT and CuPT were 12 and 5 ,g/L as 24 h LC50 to the survival of rotifers and 10,6 ng/L and 2.3 ng/L as 27 h EC50 to normal pluteus formation, respectively. By evaporation of the acetonitrile, the EC50 of ZnPT was 2.2 ng/L, which was the same as that of CuPT. The EC50s of ZnPT or CuPT for both species increased with longer irradiation times. Photolyzed ZnPT or CuPT demonstrated substantial degradation in the UV spectra, but possessed marked toxicity, which is probably due to toxic degradation products. One reason why photolyzed CuPT was toxic to rotifers was explained by the high toxicity of copper ions formed by UV-A irradiation. © 2006 Wiley Periodicals, Inc. Environ Toxicol 21: 305,309, 2006. [source] Cytotoxicity assessment of gliotoxin and penicillic acid in Tetrahymena pyriformisENVIRONMENTAL TOXICOLOGY, Issue 2 2006C. Gräbsch Abstract Various studies have documented the associations between mold exposure and effects on health. Mycotoxins, which occur in spores and mold fragments, can be involved in processes that have pathological effects, such as adynamia of the immune system, recurrent infections of the respiratory tract, or asthma. Using Tetrahymena pyriformis, a single-cell organism well established as a suitable model for human respiratory epithelium-cell functionalities, we investigated dose,response relationships of the mycotoxins gliotoxin and penicillic acid. Our study focused on the viability (cell count, MTT assay), energy levels (adenosine-5,-triphosphate content), energy-providing processes (MTT reduction per cell), and cell respiration (oxygen consumption). Both mycotoxins acted as cytotoxins in a dose-dependent manner. Gliotoxin had a stronger inhibitory effect (EC50 0.38 ,M) than did penicillic acid (EC50 343.19 ,M). The energy-providing processes were not inhibited or were only weakly inhibited under the influence of gliotoxin, whereas penicillic acid caused stimulation of the physiological parameters. Summarizing the results, it is clear that the two investigated mycotoxins must have different modes of action. They are not only different in the strength of their toxic effects but also in a variety of physiological aspects. In addition, T. pyriformis showed differences in its ability to overcome the negative effects of particular mycotoxin exposures. © 2006 Wiley Periodicals, Inc. Environ Toxicol 21: 111,117, 2006. [source] Elemental sulfur: Toxicity in vivo and in vitro to bacterial luciferase, in vitro yeast alcohol dehydrogenase, and bovine liver catalaseENVIRONMENTAL TOXICOLOGY, Issue 4 2004Anolda, etkauskait Abstract The aim of this research was to analyze the effects and the modes of action of elemental sulfur (S0) in bioluminescence and respiration of Vibrio fischeri cells and the enzymes crude luciferase, pure catalase, and alcohol dehydrogenase (ADH). Metallic copper removed sulfur and reduced the toxicity of acetone extracts of sediment samples analyzed in the bioluminescence test. The sulfur inhibition of cell bioluminescence was noncompetitive with decanal, the luciferase substrate; reversible, with maximum toxicity after 15 min (EC50 = 11.8 ,g/L); and almost totally recovered after 2 h. In vitro preincubation of crude luciferase extract with sulfur (0.28 ppm) weakly inhibited bioluminescence at 5 min, but at 30 min the inhibition reached 60%. Increasing the concentration of sulfur in the parts per million concentration range in vitro decreased bioluminescence, which was not constant, but depended on exposure time, and no dead-end/total inhibition was observed. The redox state of enzymes in the in vitro system significantly affected inhibition. Hydrogen peroxide restored fully and the reducing agent dithiothreitol, itself toxic, restored only partially luciferase activity in the presence of sulfur. Sulfur (5.5 ppm) slightly inhibited ADH and catalase, and dithiothreitol enhanced sulfur inhibition. High sulfur concentrations (2.2 ppm) inhibited the bioluminescence and enhanced the respiration rate of V. fischeri cells. Elemental sulfur data were interpreted to show that sulfur acted on at least a few V. fischeri cell sites: reversibly modifying luciferase at sites sensitive to/protected by oxidative and reducing agents and by affecting electron transport processes, resulting in enhanced oxygen consumption. Sulfur together with an enzyme reducing agent inhibited the oxidoreductive enzymes ADH and catalase, which have SH groups, metal ion cofactors, or heme, respectively, in their active centers. © 2004 Wiley Periodicals, Inc. Environ Toxicol 19: 372,386, 2004. [source] Fractal analysis of Daphnia motion for acute toxicity bioassayENVIRONMENTAL TOXICOLOGY, Issue 5 2002Nobuaki Shimizu Abstract To quantify individual behavioral responses to toxic chemicals, the swimming motion of individual Daphniamagna was continuously monitored using a motion analysis system. The fractal dimension was introduced to compare the straightness or complexity of the swimming trajectory before and after exposure to toxic chemicals. Analysis indicated that the swimming trajectory of individual Daphnia has a fractal structure. The basal fractal dimension in the control medium was 1.35±0.01 (n = 50 Daphnia). Exposure to CuSO4 (10 ,g/L), organophosphorus (Dichlorvos; 10 ,g/L), and carbamate (Propoxur; 500 ,g/L) pesticide caused a significant increase in the fractal dimension with a latency of 60 min, reaching a maximal level of 2.26±0.34, 2.43±0.19, and 2.51±0.21, respectively, after a 120-min exposure. The magnitude of the change in the fractal dimension was related to the toxic chemical concentration and the exposure time. Threshold concentrations determined at 60 min of exposure were 10 ,g/L for CuSO4, 5 ,g/L for Dichlorvos, and 500 ,g/L for Propoxur. The toxicity index (EC50) values after 120 min of exposure were 6.31 ,g/L, 7.64 ,g/L, and 466 ,g/L for CuSO4, Dichlorvos, and Propoxur, respectively. Thus, the fractal dimension seems useful for analyzing and comparing complex trails, such as swimming trajectories, which could be used as the endpoint for an acute bioassay. © 2002 Wiley Periodicals, Inc. Environ Toxicol 17: 441,448, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/tox.10077 [source] Response of the charophyte Nitellopsis obtusa to heavy metals at the cellular, cell membrane, and enzyme levelsENVIRONMENTAL TOXICOLOGY, Issue 3 2002Levonas Manusad, ianas Abstract The responses of the freshwater macroalga Nitellopsis obtusa to heavy metal (HM) salts of Hg, Cd, Co, Cu, Cr, and Ni were assessed at different levels: whole-cell mortality (96-h LC50), in vivo cell membrane (45-min depolarization of resting potential, EC50), and enzyme in plasma membrane preparations (K+, Mg2+ -specific H+ -ATPase inhibition, IC50). To measure ATPase activity, a novel procedure for isolation of plasma membrane,enriched vesicles from charophyte cells was developed. The short-term ATPase inhibition assay (IC50 from 6.0 × 10,7 to 4.6 × 10,4 M) was slightly more sensitive than the cell mortality test (LC50 from 1.1 × 10,6 to 2.6 × 10,3 M), and the electrophysiological test with the end point of 45-min depolarization of resting potential was characterized by less sensitivity for HMs (EC50 from 1.1 × 10,4 to 2.2 × 10,2 M). The variability of IC50 values assessed for HMs in the ATPase assays was close to that of LC50 values in the mortality tests (CVs from 33.5 to 83.5 and from 12.4% to 57.7%, respectively), whereas the EC50 values in the electrophysiological tests were characterized by CVs generally below 30%. All three end points identified two separate HM groups according to their toxicity to N. obtusa: Co, Ni, and Cr comprised a group of less toxic metals, whereas Hg, Cu, and Cd comprised a group of more toxic metals. However, the adverse effects within each group were discriminated differently. For example, the maximum difference between the highest and lowest LC50 for the group of less toxic metals in the long-term mortality test was approximately 60% of the response range, whereas the corresponding difference in IC50 values in the ATPase assay was 30%. In contrast, the LC50 values of the more toxic metals occupied only 10% of the response range, whereas the IC50 values were spread over 70%. Further investigation should be done of the underlying mechanism or mechanisms responsible for the observed differences in the dynamic range of a particular end point of the groups of toxicants of varying strength. © 2002 Wiley Periodicals, Inc. Environ Toxicol 17: 275,283, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/tox.10058 [source] Effects of the organophosphorus insecticide fenitrothion on growth in five freshwater species of phytoplanktonENVIRONMENTAL TOXICOLOGY, Issue 4 2001Consuelo Sabater Abstract The acute toxicity of the insecticide fenitrothion was measured using four freshwater algae (Chlorella saccharophila, Chlorella vulgaris, Scenedesmus acutus, and Scenedesmus subspicatus) and one cyanobacteria (Pseudanabaena galeata). Insecticide concentrations eliciting 50% growth reduction over 96 hr (EC50) ranged from 0.84 to 11.9 mg/L. Fenitrothion was more toxic than other pesticides studied with the same algal species such as chlorsulfuron, molinate, and pyridaphenthion. The transformation of effective concentrations of fenitrothion and other pesticides obtained from toxicity measurements into percent of the saturation level in water is used as a first evaluation of potential hazard to aquatic systems. The insecticides fenitrothion and pyridaphenthion were less hazardous than the herbicides atrazine, benthiocarb, cinosulfuron, chlorsulfuron, methyl-bensulfuron, and molinate. The two species of Chlorella and the cyanobacterium Pseudanabaena were more tolerant to fenitrothion than the two species of Scenedesmus. © 2001 John Wiley & Sons, Inc. Environ Toxicol 16: 314,320, 2001 [source] Chronic copper toxicity in the estuarine copepod Acartia tonsa at different salinitiesENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 10 2010Mariana M. Lauer Abstract Chronic Cu toxicity was evaluated in the euryhaline copepod Acartia tonsa. Male and female copepods were exposed (6 d) separately to different combinations of Cu concentration and water salinity (5, 15, and 30 ppt) using different routes of exposure (waterborne, waterborne plus dietborne, and dietborne). After exposure, groups of one male and three female copepods were allowed to reproduce for 24,h. In control copepods, egg production augmented with increasing water salinity. However, egg hatching rate did not change. Copper exposure reduced egg production and hatching rate in all water salinities tested, but the reproductive response was dependent on the route of Cu exposure. Median effective concentration (EC50) values for egg production after waterborne exposure were 9.9, 36.8, and 48.8,µg/L dissolved Cu at water salinities of 5, 15, and 30 ppt, respectively. For waterborne plus dietborne exposure, they were significantly higher (40.1, 63.7, and 109.9,µg /L, respectively). After dietborne exposure, approximately 40% decrease in egg production was observed, independently of Cu concentration and water salinity tested. At water salinities of 5 and 30 ppt, egg hatching rate reduced after waterborne exposure, together or not with the dietborne exposure. At water salinity of 15 ppt, Cu toxicity was only observed after dietborne exposure. Data indicate that egg production is a more reliable reproductive endpoint to measure chronic Cu toxicity in copepods than egg hatching rate in a wide range of water salinities. They also suggest that both water salinity and route of Cu exposure should be taken into account in the development of a chronic biotic ligand model version for estuarine and marine environments. Environ. Toxicol. Chem. 2010;29:2297,2303. © 2010 SETAC [source] 2,3,4,7,8-pentachlorodibenzofuran is a more potent cytochrome P4501A inducer than 2,3,7,8-tetrachlorodibenzo- p -dioxin in herring gull hepatocyte culturesENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2010Jessica C. Hervé Abstract Concentration-dependent effects of 2,3,7,8-tetrachlorodibenzo- p -dioxin (TCDD), 2,3,4,7,8-pentachlorodibenzofuran (PeCDF), and 2,3,7,8-tetrachlorodibenzofuran (TCDF) on cytochrome P4501A (CYP1A) induction were determined in primary cultures of embryonic herring gull (Larus argentatus) hepatocytes exposed for 24,h. Based on the concentration that induced 50% of the maximal response (EC50), the relative potencies of TCDD and TCDF did not differ by more than 3.5-fold. However, also based on the EC50, PeCDF was 40-fold, 21-fold, and 9.8-fold more potent for inducing ethoxyresorufin- O -deethylase (EROD) activity, CYP1A4 mRNA expression, and CYP1A5 mRNA expression than TCDD, respectively. The relative CYP1A-inducing potencies of PeCDF and of other dioxin-like chemicals (DLCs) in herring gull hepatocytes (HEH RePs), along with data on concentrations of DLCs in Great Lakes herring gull eggs, were used to calculate World Health Organization toxic equivalent (WHO-TEQ) concentrations and herring gull embryonic hepatocyte toxic equivalent (HEH-TEQ) concentrations. The analysis indicated that, when using avian toxic equivalency factors (TEFs) recommended by the WHO, the relative contribution of TCDD (1.1,10.2%) to total WHO-TEQ concentration was higher than that of PeCDF (1.7,2.9%). These results differ from the relative contribution of TCDD and PeCDF when HEH RePs were used; PeCDF was a major contributor (36.5,52.9%) to total HEH-TEQ concentrations, whereas the contribution by TCDD (1.2,10.3%) was less than that of PeCDF. The WHO TEFs for avian species were largely derived from studies with the domestic chicken (Gallus gallus domesticus). The findings of the present study suggest that it is necessary to determine the relative potencies of DLCs in wild birds and to re-evaluate their relative contributions to the biochemical and toxic effects previously reported in herring gulls and other avian species. Environ. Toxicol. Chem. 2010;29:2088,2095. © 2010 SETAC [source] Dual enantioselective effect of the insecticide bifenthrin on locomotor behavior and development in embryonic,larval zebrafishENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2010Meiqing Jin Abstract Bifenthrin (BF) is a synthetic pyrethroid that targets the nervous system of insects and may have adverse effects on the behavior and development of nontarget organisms. However, no reports have been issued on the effects of different enantiomers on locomotor behavior for synthetic pyrethroids (SPs) in zebrafish, and whether locomotor activity is associated with the developmental toxicities remains unclear. In this study, enantioselectivity of BF (1S and 1R) on the acute locomotor activity and developmental toxicities of embryonic,larval zebrafish were first evaluated. The results indicated that 1R -BF was more toxic, causing morphological impairments, with a 96-h median effective concentration (EC50) of 226,µg/L for pericardial edema and 145,µg/L for curved body axis. Administration of 20,µg/L of one enantiomer of BF had differential effects on the locomotor activity of zebrafish larvae at 4 d postfertilization (dpf) under alternating light and dark conditions. Larvae treated with 1R -BF were not sensitive to the alteration of light to dark, and the locomotor activities were reduced to a level similar to that observed in light, which otherwise increased rapidly and markedly. However, 1S -BF did not alter the general pattern of zebrafish response to the light or dark compared with the control. The results demonstrated that the differential effects on development might have contributed to the enantioselectivity in the locomotor activity. The consistency of enantioselectivity with insecticidal activity may also indicate a common mode of action. Furthermore, 1R -BF accelerated the spontaneous movement and hatching process, whereas 1S -BF seemed to be inhibitory. The results suggest the need to link behavioral changes to developmental toxicities in order to achieve more comprehensive health risk assessments of chiral pesticides. Environ. Toxicol. Chem. 2010;29:1561,1567. © 2010 SETAC [source] Influence of soil type and organic matter content on the bioavailability, accumulation, and toxicity of ,-cypermethrin in the springtail Folsomia candidaENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 5 2010Bjarne Styrishave Abstract The influence of organic matter (OM) content on ,-cypermethrin porewater concentrations and springtail Folsomia candida accumulation was investigated in two soils with different levels of organic matter, a forest soil with a total organic carbon (TOC) content of 5.0% (OM,=,11.5%) and an agricultural soil with a TOC content of 1.3% (OM,=,4.0%). Also, the effects of ,-cypermethrin concentrations in soil and pore water and the influence of soil aging on springtail reproduction were investigated. Springtail reproduction was severely affected by increasing ,-cypermethrin in soil with 1.3% TOC; the median effective concentration value (EC50) was estimated to 23.4,mg/kg (dry wt). Reproduction was only marginally affected in the soil with 5.0% TOC, and no EC50 value could be estimated. However, when expressing ,-cypermethrin accumulation as a function of soil ,-cypermethrin concentrations, no difference was found between the two soil types, and no additional ,-cypermethrin uptake was observed at soil concentrations above approximately 200,mg/kg (dry wt). By using solid-phase microextraction (SPME), it could be demonstrated that ,-cypermethrin porewater concentrations were higher in the soil with low organic matter (LOM) content than in the soil with high organic matter (HOM) content. Furthermore, a clear relationship was found between ,-cypermethrin concentrations in springtails and porewater. Soil aging was not found to exert any effect on ,-cypermethrin toxicity toward springtails. The study indicates that the springtail's accumulation of ,-cypermethrin and reproduction is governed by ,-cypermethrin porewater concentrations rather than the total ,-cypermethrin concentration in soil. Environ. Toxicol. Chem. 2010;29:1084,1090. © 2010 SETAC [source] Effects of 17 ,-estradiol exposure on Xenopus laevis gonadal histopathologyENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 5 2010Jeffrey C. Wolf Abstract The natural estrogen 17 ,-estradiol (E2) is a potential environmental contaminant commonly employed as a positive control substance in bioassays involving estrogenic effects. The aquatic anuran Xenopus laevis is a frequent subject of reproductive endocrine disruptor research; however, histopathological investigations have tended to be less than comprehensive. Consequently, a study was designed to characterize gross and microscopic changes in the gonads of X. laevis as a result of E2 exposure. Additional goals of this study, which consisted of three separate experiments, included the standardization of diagnostic terminology and criteria, the validation of statistical methodology, and the establishment of a half maximal effective concentration (EC50) for E2 as defined by an approximately 50% conversion of presumptive genotypic males to phenotypic females. In the first experiment, frogs were exposed to nominal concentrations of 0, 0.2, 1.5, or 6.0,µg/L E2. From these experimental results and those of a subsequent range finding trial, the EC50 for E2 was determined to be approximately 0.2,µg/L. This E2 concentration was utilized in the other two experiments, which were performed at different facilities to confirm the reproducibility of results. Experiments were conducted according to Good Laboratory Practice guidelines, and the histopathologic evaluations were peer reviewed by an independent pathologist. Among the three trials, the histopathological findings that were strongly associated with E2-exposure (p,<,0.001 to 0.0001) included an increase in the proportion of phenotypic females, mixed sex, dilated testis tubules, dividing gonocytes in the testis, and dilated ovarian cavities in phenotypic ovaries. A comparison of the gross and microscopic evaluations suggested that some morphologic changes in the gonads may potentially be missed if studies rely entirely on macroscopic assessment. Environ. Toxicol. Chem. 2010;29:1091,1105. © 2010 SETAC [source] The antimicrobial triclocarban stimulates embryo production in the freshwater mudsnail Potamopyrgus antipodarum,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2010Ben D. Giudice Abstract Recent research has indicated that the antimicrobial chemical triclocarban (TCC) represents a new type of endocrine disruptor, amplifying the transcriptional activity of steroid hormones and their receptors while itself exhibiting little affinity for these receptors. The effects of TCC were studied in the freshwater mudsnail Potamopyrgus antipodarum. Specimens were exposed to concentrations ranging from 0.05 to 10.5 µg/L dissolved TCC and were removed and dissected, and embryos contained within the brood pouch were counted and classified as shelled or unshelled after two and four weeks of exposure. After four weeks, environmentally relevant TCC concentrations of 1.6 to 10.5 µg/L resulted in statistically significant increases in the number of unshelled embryos, whereas 0.2, 1.6, and 10.5 µg/L exposures significantly increased numbers of shelled embryos. The lowest observed effect concentration (LOEC) was 0.2 µg/L, the no observed effect concentration (NOEC) was 0.05 µg/L; the 10% effective concentration (EC10) and the median effective concentration (EC50) for unshelled effects were 0.5 µg/L and 2.5 µg/L, respectively. Given the widespread occurrence of TCC in the environment and the effects shown at environmentally relevant concentrations, these results indicate that TCC may be causing reproductive effects in the environment. Furthermore, the present study indicates that environmental risk from a new class of endocrine-disrupting chemicals (EDCs) is both qualitatively and quantitatively similar to risk from existing classes of EDCs. Environ. Toxicol. Chem. 2010;29:966,970. © 2009 SETAC [source] Chronic toxicity of five structurally diverse demethylase-inhibiting fungicides to the crustacean Daphnia magna: A comparative assessmentENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 6 2009Enken Hassold Abstract Demethylase inhibitors (DMIs) are broad-spectrum fungicides that are ubiquitously used in agriculture and medicine. They comprise chemically heterogeneous substances that share a common biochemical target in fungi, the inhibition of a specific step in sterol biosynthesis. Several DMIs are suspected to disrupt endocrine-mediated processes in a range of organisms and to inhibit ecdysteroid biosynthesis in arthropods. It is unclear, however, whether and, if so, to what extent different DMI fungicides have a similar mode of action in nontarget organisms, which in turn would lead to a common chronic toxicity profile. Therefore, we selected a representative of each of the major DMI classes,-the piperazine triforine, the pyrimidine fenarimol, the pyridine pyrifenox, the imidazole prochloraz, and the triazole triadimefon,-and comparatively investigated their chronic toxicity to Daphnia magna. No toxicity was detectable up to the limit of solubility of triforine (61 ,mol/L). All other DMIs reduced reproductive success by delaying molting and development and by causing severe developmental abnormalities among offspring. Prochloraz was most toxic (median effective concentration [EC50] for fecundity reduction, 0.76 ,mol/L), followed by fenarimol (EC50, 1.14 ,mol/L), pyrifenox (EC50, 3.15 ,mol/L), and triadimefon (EC50, 5.13 ,mol/L). Mean effect concentrations for fecundity reduction were related to lipophilicity and followed baseline toxicity. However, triadimefon and fenarimol (but none of the other tested DMIs) caused severe eye malformations among exposed offspring. Affected neonates did survive, but a reduced ecological fitness can be assumed. Offspring exposed to fenarimol in mater matured earlier. The investigated different life-history parameters were affected in a substance-specific manner. These qualitatively different toxicity profiles suggest additional, substance-specific mechanisms of action in D. magna that probably are related to an antiecdysteroid action. [source] Identification of hydroxyl copper toxicity to barley (Hordeum vulgare) root elongation in solution cultureENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2009Xuedong Wang Abstract The effect of pH on the acute toxicity of Cu to barley (Hordeum vulgare) root elongation was investigated in solution culture. The results showed that the median effective concentrations (EC50s; i.e., the concentration that reduced root elongation by 50% based on free Cu2+ activity) were not significantly different in the low-pH range from 4.5 to 6.5, but in the high-pH range from 7.0 to 8.0, a significant effect of pH on EC50s was found. The nonlinear relationship between EC50 and H+ activity in the present study indicated that the increased toxicity with increasing pH in solution may not be caused by decreasing H+ competition. When we take account of CuOH+ activities, a good linear relationship (r2 > 0.97) between the ratio of CuOH+ activity to free Cu2+ activity and acute Cu toxicity to barley root elongation was achieved, which indicated that the observed toxicity in the high-pH range may be caused by CuOH+ plus free Cu2+ in solution. Linear-regression analysis suggested CuOH+ had a greater binding affinity than Cu2+ at the biotic ligand sites. The logistic dose,response curve showed that expressing the Cu dose as Cu2+ + 2.92·CuOH+ improved the data fit significantly compared to consideration of the free Cu2+ activity only. Thus, our results suggest CuOH+ was highly toxic to barley root elongation. The enhanced toxicity of CuOH+ therefore needs to be considered when modeling the effect of pH on Cu toxicity to barley for exposures having pH greater than 6.5. [source] Dissolved fraction of standard laboratory cladoceran food alters toxicity of waterborne silver to Ceriodaphnia dubia,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 6 2008Jason M. Kolts Abstract The biotic ligand model (BLM) for the acute toxicity of cationic metals to aquatic organisms incorporates the toxicity-modifying effects of dissolved organic matter (DOM), but the default parameterization (i.e., assuming 10% of DOM is humic acid) does not differentiate DOM from different sources. We exposed a cladoceran (Ceriodaphnia dubia) to Ag in the presence of DOM from filtered YCT (standard yeast,Cerophyll®,trout chow food recommended by the U.S. Environmental Protection Agency [EPA] for cladocerans), from the Suwannee River (GA, USA; relatively little anthropogenic input), and from the Desjardins Canal in Hamilton (ON, Canada; receives treated municipal wastewater effluent). In all three treatments, the dissolved organic carbon (DOC) concentration was 2 mg/L (the concentration following addition of YCT slurry at the U.S. EPA,recommended volume ratio). The average 48-h median effects concentration (EC50) ratios for dissolved Ag in the presence and absence of DOM [i.e., (EC50 with DOM)/(EC50 without DOM)] were as follows: Suwannee River, 1.6; Desjardins Canal, 2.2; and YCT filtrate, 26.8. Therefore, YCT filtrate provided much more protection against Ag toxicity than that provided by DOM from the surface waters. The major spectral characteristic that differentiated YCT filtrate from the other two types of DOM was a strong tryptophan peak in the excitation,emission matrix for YCT. These results have important implications for interpreting Ag toxicity tests in which organisms are fed YCT, and they suggest BLM-calculated toxicity predictions might be improved by incorporating specific chemical constituents or surrogate indices of DOM. Another component of the protective effect against Ag toxicity, however, might be that the dissolved fraction of YCT served as an energy and/or nutrient source for C. dubia. [source] Response of the freshwater alga Chlorella vulgaris to trichloroisocyanuric acid and ciprofloxacin,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2008Xiangping Nie Abstract The effects of trichloroisocyanuric acid (TCCA) and ciprofloxacin (CPFX) on the freshwater alga Chlorella vulgaris were assessed by toxicity bioassays and by the values of biomarkers in phase I and phase II. The biomarkers included growth rate, concentration of chlorophyll a, activities of 7-ethoxyresorufin- O -dealkylases (EROD), glutathione S -transferase (GST), catalase (CAT), and total glutathione (GSH). Ciprofloxacin was a weaker growth inhibitor than TCCA but, at a concentration of greater than 12.5 mg/L, decreased the growth of C. vulgaris. Concentration of chlorophyll a showed a similar trend. The 96-h median effective concentration (EC50; i.e., 50% reduction in growth relative to the control) of CPFX was 20.6 mg/L. Trichloroisocyanuric acid was a strong growth inhibitor and, at concentrations of greater than 0.80 mg/L, caused 100% inhibition on 24-h exposure. The 96-h EC50 of TCCA was 0.313 mg/L. Ciprofloxacin and TCCA affected the phase I and phase II enzyme activities differently. On exposure to CPFX, both EROD and GSH decreased at low CPFX concentrations (<5.0 mg/L) and increased at high CPFX concentrations (>12.5 mg/L), and CAT and GST exhibited induction at low concentrations and inhibition at high concentrations. In TCCA exposure, GST activity was significantly stimulated, and GSH concentration was increased. Catalase activity increased only at TCCA concentrations of greater than 0.12 mg/L, and no change in EROD activity was observed. [source] Bioavailability and microbial adaptation to elevated levels of uranium in an acid, organic topsoil forming on an old mine spoilENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2007Erik Jautris Joner Abstract An old mine spoil at a 19th-century mining site with considerable residues of uranium (400,800 mg U/kg) was investigated with respect to U concentrations in soil and plants and tolerance to U in the soil microbial community in order to describe the bioavailability of U. Measurements of soil fractions representing water-soluble U, easily exchangeable U, and U bound to humified organic matter showed that all fractions contained elevated concentrations of U. Plant U concentrations were only 10 times higher at the mine spoil site compared to the reference site (3 mg U/kg vs 0.3 mg U/kg), while the most easily available soil fractions contained 0.18 to 0.86 mg U/kg soil at the mine spoil. An ecotoxicity bioassay using incorporation of [3H]thymidine into the indigenous microbial communities of the two soils in the presence of increasing U concentrations showed that microorganisms at the mining site were sensitive to U but also that they had acquired a substantial tolerance toward U (EC50, the effective concentration reducing activity by 50% of UO2 -citrate was , 120 ,M as compared to 30 ,M in the reference soil). In the assay, more than 40% of the microbial activity was maintained in the presence of 1 ,M UO2-citrate versus 3% in the reference soil. We conclude that U-enriched mining waste can contain sufficiently elevated concentrations of bioavailable U to affect indigenous microorganisms and that bioavailable U imposes a selection pressure that favors the development of a highly uranium-tolerant microbial community, while plant uptake of U remains low. [source] Soil factors controlling the toxicity of copper and zinc to microbial processes in Australian soilsENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2007Kris Broos Abstract Two soil microbial processes, substrate-induced nitrification (SIN) and substrate-induced respiration (SIR), were measured in the topsoils of 12 Australian field trials that were amended separately with increasing concentrations of ZnSO4 or CuSO4. The median effect concentration (EC50) values for Zn and Cu based on total metal concentrations varied between 107 and 8,298 mg kg,1 for Zn and 108 and 2,155 mg kg,1 Cu among soils. The differences in both Zn and Cu toxicity across the 12 soils were not explained by either the soil solution metal concentrations or CaCl2 -extractable metal concentrations, because the variation in the EC50 values was larger than those using total concentrations. Toxicity of Zn and Cu decreased with increasing soil pH for SIN. For Cu, also increasing cation exchange capacity (CEC) and percent clay decreased the toxicity towards SIN. In contrast to SIN, soil pH had no significant effect on toxicity values of SIR. Significant relationships were found between the EC50 values for SIR and background Zn and CEC for Zn, and percent clay and log CEC for Cu. Relationships such as those developed in this study will permit Australian environmental regulation to move from single-value national soil quality guidelines to soil-specific quality guidelines and permit soil-specific risk assessments to be undertaken. [source] Impact of activated sludge-derived colloidal organic carbon on behavior of estrogenic agonist recombinant yeast bioassayENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2005R. David Holbrook Abstract The impact of size-fractionated colloidal organic carbon (COC) originating from a biological wastewater treatment facility on the sensitivity of the yeast estrogen screen (YES) bioassay containing the human estrogen receptor (hER) gene was evaluated. Dose-response curves of serially diluted 17,-estradiol (E2), both in the presence and absence of COC, were generated by the YES bioassay. The concentration of E2 leading to a 50% YES response (effective concentration 50%, or EC50) was used to evaluate quantitatively the estrogenic activity of the different COC-E2 mixtures. The EC50 values for all COC size fractions, including COC-free samples (<1 kD), were statistically greater than the controls using Milli-Q water. Normalized EC50 values significantly increased as a function of COC concentration for the larger size fractions (>0.22 ,m), but were not significantly affected by smaller COC material at environmental levels (1,5 mg/L), while both colloidal polysaccharide concentrations and colloidal fluorophores (measured at an excitation/emission wavelength pair of 350 nm/450 nm) appear to have an important role in the sensitivity of the YES bioassay. Estimates of the colloid-associated E2 fraction did not predict accurately increases in EC50 values. Matrix effects of the specific environment being tested with the YES bioassay need to be evaluated closely due to the sensitivity of the hER and reporter plasmid. [source] Evaluation of the ishikawa cell line bioassay for the detection of estrogenic substances from sediment extractsENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2005Shinya Hashimoto Abstract This study examines the application of Ishikawa human endometrial adenocarcinoma cells to measure the estrogenic activity of fractionated extracts of sediments from Tokyo Bay, Japan. Estrogen stimulates alkaline phosphatase activity in this cell line. The results of these assays were compared with those of a yeast estrogen screen (YES) assay. The Ishikawa cell line bioassay showed higher sensitivity to 17,-estradiol (median effective concentration [EC50], 10.7 pM) than did the YES assay (EC50, 480 pM). Fractionation of sediment extracts (all samples collected from 5 sites) showed that the nonpolar fraction was poisonous to yeast cells; the estrogenic activity of this fraction, therefore, could not be measured by YES. However, the nonpolar fraction did not kill the Ishikawa cells. The 17,-estradiol-equivalent values of 15 extracts (3 fractions from each of 5 sediment samples) ranged from 5.7 to 697 pg/g dry weight according to the Ishikawa cell line bioassay. Chemical analysis using gas chromatography-mass spectrometry revealed that the highest concentrations of endocrine-disrupting chemicals were observed at the sampling station near the sewage treatment plant. The results support that the Ishikawa cell line bioassay is suitable for measuring the estrogenic activity of sediment samples. [source] Influence of water chemistry on the acute toxicity of copper and zinc to the cladoceran Ceriodaphnia cf dubiaENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2005Ross V. Hyne Abstract This study determined the influence of key water chemistry parameters (pH, alkalinity, dissolved organic carbon [DOC], and hardness) on the aqueous speciation of copper and zinc and its relationship to the acute toxicity of these metals to the cladoceran Ceriodaphnia cf dubia. Immobilization tests were performed for 48-h in synthetic or natural waters buffered at various pH values from 5.5 to 8.4 (other chemical parameters held constant). The toxicity of copper to C. cf dubia decreased fivefold with increasing pH, whereas the toxicity of zinc increased fivefold with increasing pH. The effect of DOC on copper and zinc toxicity to C. cf dubia was determined using natural fulvic acid in the synthetic water. Increasing DOC was found to decrease linearly the toxicity of copper, with the mean effect concentration of copper that immobilized 50% of the cladocerans (EC50) value 45 times higher at 10 mg/L, relative to 0.1 mg/L DOC at pH 6.5. In contrast, the addition of 10 mg/L DOC only resulted in a very small (1.3-fold) reduction in the toxicity of zinc to C. cf dubia. Copper toxicity to C. cf dubia generally did not vary as a function of hardness, whereas zinc toxicity was reduced by a factor of only two, with an increase in water hardness from 44 to 374 mg CaCO3/L. Increasing bicarbonate alkalinity of synthetic waters (30,125 mg/L as CaCO3) decreased the toxicity of copper up to fivefold, which mainly could be attributed to the formation of copper-carbonate complexes, in addition to a pH effect. The toxicity of copper added to a range of natural waters with varying DOC content, pH, and hardness was consistent with the toxicity predicted using the data obtained from the synthetic waters. [source] Use of laboratory toxicity tests with bivalve and echinoderm embryos to evaluate the bioavailability of copper in San Diego Bay, California, USAENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2005Gunther Rosen Abstract Copper concentrations in parts of San Diego Bay (CA, USA) exceed ambient water quality criteria (WQC; currently 3.1 ,g/L dissolved, U.S. Environmental Protection Agency [U.S. EPA]). In order to better understand the bioavailability of copper to water-column organisms in the bay, toxicity tests were performed with copper added to surface water collected from various sites in the estuary over a three-year period. The species and endpoints used, bivalve and echinoderm embryo-larval development, are among the most sensitive in the U.S. EPA's national toxicity dataset, which is used to derive WQC. No toxicity was observed in ambient bay water samples, as indicated by high proportions of normally developed larvae in control treatments, averaging 93 ± 5% across all sites and all sampling events. Median effects concentrations (EC50), obtained by copper spiking of ambient water samples, ranged from 1.7 to 3.4 times lower at sites located near the mouth compared to sites near the back of the bay. These data indicate a gradient in complexation capacity increasing from the mouth to the back of the bay, which is consistent with similar trends in dissolved organic carbon and total suspended solids. For the bay as a whole, estimates for total recoverable and dissolved water-effect ratios (WER) ranged from 2.07 to 2.27 and 1.54 to 1.67, respectively. Water-effect ratios of this magnitude suggest that adoption of a somewhat higher site-specific WQC for San Diego Bay still would achieve the level of protection that is intended by the WQC guidelines. [source] Copper toxicity in relation to surface water-dissolved organic matter: Biological effects to Daphnia magnaENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2004Kees J.M. Kramer Abstract Water quality standards for copper are usually stated in total element concentrations. It is known, however, that a major part of the copper can be bound in complexes that are biologically not available. Natural organic matter, such as humic and fulvic acids, are strong complexing agents that may affect the bioavailable copper (Cu2+) concentration. The aim of this study was to quantify the relation between the concentration of dissolved natural organic matter and free Cu2+ in surface waters, and the biological effect, as measured in a standardized ecotoxicological test (48 h-median effective concentration [EC50] Daphnia magna, mobility). Six typical Dutch surface waters and an artificial water, ranging from 0.1 to 22 mg/L dissolved organic carbon (DOC), were collected and analyzed quarterly. Chemical speciation modeling was used as supporting evidence to assess bioavailability. The results show clear evidence of a linear relation between the concentration of dissolved organic carbon (in milligrams DOC/L) and the ecotoxicological effect (as effect concentration, EC50, expressed as micrograms Cu/L): 48-h EC50 (Daphnia, mobility) = 17.2 × DOC + 30.2 (r2 = 0.80, n = 22). Except for a brook with atypical water quality characteristics, no differences were observed among water type or season. When ultraviolet (UV)-absorption (380 nm) was used to characterize the dissolved organic carbon, a linear correlation was found as well. The importance of the free copper concentration was demonstrated by speciation calculations: In humic-rich waters the free Cu2+ concentration was estimated at ,10,11 M, whereas in medium to low dissolved organic carbon waters the [Cu2+] was ,10,10 M. Speciation calculations performed for copper concentrations at the effective concentration level (where the biological effect is considered the same) resulted in very similar free copper concentrations (,10,8 M Cu) in these surface waters with different characteristics. These observations consistently show that the presence of organic matter decreases the bioavailability, uptake, and ecotoxicity of copper in the aquatic environment. It demonstrates that the DOC content must be included in site-specific environmental risk assessment for trace metals (at least for copper). It is the quantification of the effects described that allows policy makers to review the criteria for copper in surface waters. [source] Wastewater treatment polymers identified as the toxic component of a diamond mine effluentENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2004Simone J. C. de Rosemond Abstract The EkatiÔ Diamond Mine, located approximately 300 km northeast of Yellowknife in Canada's Northwest Territories, uses mechanical crushing and washing processes to extract diamonds from kimberlite ore. The processing plant's effluent contains kimberlite ore particles (,0.5 mm), wastewater, and two wastewater treatment polymers, a cationic polydiallydimethylammonium chloride (DADMAC) polymer and an anionic sodium acrylate polyacrylamide (PAM) polymer. A series of acute (48-h) and chronic (7-d) toxicity tests determined the processed kimberlite effluent (PKE) was chronically, but not acutely, toxic to Ceriodaphnia dubia. Reproduction of C. dubia was inhibited significantly at concentrations as low as 12.5% PKE. Toxicity identification evaluations (TIE) were initiated to identify the toxic component of PKE. Ethylenediaminetetraacetic acid (EDTA), sodium thiosulfate, aeration, and solid phase extraction with C-18 manipulations failed to reduce PKE toxicity. Toxicity was reduced significantly by pH adjustments to pH 3 or 11 followed by filtration. Toxicity testing with C. dubia determined that the cationic DADMAC polymer had a 48-h median lethal concentration (LC50) of 0.32 mg/L and 7-d median effective concentration (EC50) of 0.014 mg/L. The anionic PAM polymer had a 48-h LC50 of 218 mg/L. A weight-of-evidence approach, using the data obtained from the TIE, the polymer toxicity experiments, the estimated concentration of the cationic polymer in the kimberlite effluent, and the behavior of kimberlite minerals in pH-adjusted solutions provided sufficient evidence to identify the cationic DADMAC polymer as the toxic component of the diamond mine PKE. [source] |