E-beam Irradiation (e-beam + irradiation)

Distribution by Scientific Domains


Selected Abstracts


Tuning and Enhancing Photoluminescence of Light-Emitting Polymer Nanotubes through Electron-Beam Irradiation

ADVANCED FUNCTIONAL MATERIALS, Issue 4 2009
Young Ki Hong
A new method for the tuning and enhancing photoluminescence (PL) characteristics of light emitting poly (3-methylthiopnehe) (P3MT) nanotubes through E-beam irradiation under atmospheric environments is reported. An E-beam generated from a linear electron accelerator (1 MeV, 1.6,×,1013,8.0,×,1016 electrons cm,2) is irradiated onto P3MT nanotubes including an Al2O3 template. From laser confocal microscope (LCM) PL experiments, significant enhancements in the PL intensity,up to about 90 times of an isolated single strand of the E-beam irradiated P3MT nanotubes,are observed. The luminescent color of the P3MT nanotubes changes from green to red color depending on the variation of E-beam dosage. These results might originate from the de-doping effect and the conformational modification through E-beam irradiations. Conformational changes of the E-beam irradiated P3MT nanotubes are confirmed by LCM single Raman and ultraviolet-visible (UV/Vis) absorption spectra. From UV/Vis absorption spectra, it is observed that the ,,,* transition peak and the doping induced bipolaron peaks of the P3MT nanotubes dramatically vary with E-beam irradiating conditions. [source]


OPTIMIZING ELECTRON BEAM IRRADIATION OF "TOMMY ATKINS" MANGOES (MANGIFERA INDICA L.)

JOURNAL OF FOOD PROCESS ENGINEERING, Issue 4 2007
MARIA A. MORENO
ABSTRACT We determined the optimum irradiation treatment for decontamination of physiologically mature fresh "Tommy Atkins" mangoes, without detriment to the fruits' sensory and chemical properties. Mangoes were irradiated at 1.0, 1.5 and 3.1 kGy using a 10-MeV linear accelerator (14-kW LINAC, double beam mode). Mangoes were stored for 21 days at 12C and 62.7% relative humidity with nonirradiated fruits as controls. Dose distribution within the fruit was determined using Monte Carlo techniques. Irradiation did not affect the overall sensory quality of mangoes at doses up to 1.5 kGy. Only fruits irradiated at 3.1 kGy were unacceptable by the panelists. Irradiation at 3.1 kGy enhanced the fruit's aroma characteristics. Irradiation at all levels caused a significant (P , 0.05) decrease (,50,70%) in ascorbic acid content by the end of storage. Mangoes irradiated at 1.5 and 3.1 kGy had slightly higher levels of phenolics than the control (27.4 and 18.3%, respectively). E-beam irradiation of Tommy Atkins mangoes up to 3.0 kGy causes no detriment to the fruit's overall sensory and chemical quality. [source]


Tuning and Enhancing Photoluminescence of Light-Emitting Polymer Nanotubes through Electron-Beam Irradiation

ADVANCED FUNCTIONAL MATERIALS, Issue 4 2009
Young Ki Hong
A new method for the tuning and enhancing photoluminescence (PL) characteristics of light emitting poly (3-methylthiopnehe) (P3MT) nanotubes through E-beam irradiation under atmospheric environments is reported. An E-beam generated from a linear electron accelerator (1 MeV, 1.6,×,1013,8.0,×,1016 electrons cm,2) is irradiated onto P3MT nanotubes including an Al2O3 template. From laser confocal microscope (LCM) PL experiments, significant enhancements in the PL intensity,up to about 90 times of an isolated single strand of the E-beam irradiated P3MT nanotubes,are observed. The luminescent color of the P3MT nanotubes changes from green to red color depending on the variation of E-beam dosage. These results might originate from the de-doping effect and the conformational modification through E-beam irradiations. Conformational changes of the E-beam irradiated P3MT nanotubes are confirmed by LCM single Raman and ultraviolet-visible (UV/Vis) absorption spectra. From UV/Vis absorption spectra, it is observed that the ,,,* transition peak and the doping induced bipolaron peaks of the P3MT nanotubes dramatically vary with E-beam irradiating conditions. [source]


Recovery of,Salmonella enterica,Serovars Typhimurium and Tennessee in Peanut Butter after Electron Beam Exposure

JOURNAL OF FOOD SCIENCE, Issue 7 2010
Kristen E. Matak
Abstract:, The effect of electron beam (e-beam) radiation on the recovery of,Salmonella,serotypes Tennessee (ATCC 10722) and Typhimurium (ATCC 14028) in creamy peanut butter over a 14-d storage period at 22 °C was studied. Each,Salmonella,type was independently inoculated into peanut butter and subjected to e-beam doses that ranged from 0 to 3.1 kGy, confirmed by film dosimetry. After 2-, 4-, 6-, 8-, and 14-d of storage, microbial analyses were conducted. Survivors were recovered on growth and selective media using standard spread-plating methods. Microbial counts (CFU/g) were log-converted and differences were determined by ANOVA and Tukey's Honestly Significant Differences test. When samples were not e-beam-treated, there were no significant changes (P,> 0.05) in microbial numbers over time. In e-beamed samples, microbial numbers decreased over time; however, reductions were not always significant. Initial recovery rates (R-rates) 2 d after e-beam treatment were significantly different for the 2 strains of,Salmonella,and between recovery media (P,< 0.05); however, these differences did not persist for the remainder of the storage period (P,> 0.05) indicating that injured cells were not able to survive in the high-fat, low-water activity peanut butter environment. R-rates for both strains of,Salmonella,were maintained until day 14 when there were significant reductions in,Salmonella,Typhimurium (P,< 0.05). These results indicate that,Salmonella,Tennessee and,Salmonella,Typhimurium will survive in peanut butter when exposed to nonlethal doses of e-beam irradiation. Practical Application: Electron beam (e-beam) irradiation is an alternative to thermal processing; this technique inactivates microorganisms and insects that might be present in a food by generating radiation by accelerated electrons that inactivate organisms directly because of interaction with cell components and indirectly by producing free radicals that disrupt integrity of the cell membrane. E-beam radiation will reduce the number of probable microbiological hazards that could be present while the food remains generally unaffected in texture, taste, and nutritional value. A recent study showed e-beam irradiation to be effective at reducing both,Salmonella,Tennessee and Typhimurium in peanut butter by one log after exposure to less than 1 kGy, highlighting the need to explore this process further. [source]


host-defect luminescence of stishovite

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 1 2005
A. Trukhin
Abstract a detailed study of the 4.75 eV luminescence band of stishovite single crystal (SiO2 with rutile structure) is reported. Kinetics of luminescence intensity is studied at durable (tens of minutes) X-ray excitation. The observed behaviour of the band intensity is explained by creation and destruction of luminescence centres depending on temperature both being determined by radiation stimulated diffusion of atomic particles. The luminescence decay is observed to last for minutes after X-ray irradiation while only for ns and hundreds of µs under pulsed e-beam irradiation suggesting a complicated recombination of the created defects. The UV band of stishovite is compared with the 4.9 eV luminescence band in ,-quartz, which could not be created by X-ray. the latter being associated with transient centres created by destructive electron-beam irradiation or with permanent centres at neutron or ,-irradiation, and with oxygen-deficient luminescence of silica glass. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]