Home About us Contact | |||
Euclidean Distance (euclidean + distance)
Selected AbstractsDart Throwing on SurfacesCOMPUTER GRAPHICS FORUM, Issue 4 2009D. Cline In this paper we present dart throwing algorithms to generate maximal Poisson disk point sets directly on 3D surfaces. We optimize dart throwing by efficiently excluding areas of the domain that are already covered by existing darts. In the case of triangle meshes, our algorithm shows dramatic speed improvement over comparable sampling methods. The simplicity of our basic algorithm naturally extends to the sampling of other surface types, including spheres, NURBS, subdivision surfaces, and implicits. We further extend the method to handle variable density points, and the placement of arbitrary ellipsoids without overlap. Finally, we demonstrate how to adapt our algorithm to work with geodesic instead of Euclidean distance. Applications for our method include fur modeling, the placement of mosaic tiles and polygon remeshing. [source] Scalable, Versatile and Simple Constrained Graph LayoutCOMPUTER GRAPHICS FORUM, Issue 3 2009Tim Dwyer Abstract We describe a new technique for graph layout subject to constraints. Compared to previous techniques the proposed method is much faster and scalable to much larger graphs. For a graph with n nodes, m edges and c constraints it computes incremental layout in time O(n log n+m+c) per iteration. Also, it supports a much more powerful class of constraint: inequalities or equalities over the Euclidean distance between nodes. We demonstrate the power of this technique by application to a number of diagramming conventions which previous constrained graph layout methods could not support. Further, the constraint-satisfaction method,inspired by recent work in position-based dynamics,is far simpler to implement than previous methods. [source] Spatial metrics and methods for riverscapes: quantifying variability in riverine fish habitat patternsENVIRONMETRICS, Issue 5 2009Céline Le Pichon Abstract Defining the optimal configuration of all habitats required during a life cycle, called vital habitat, is a necessary step for effective management of riverine fishes and restoration of river habitats. Landscape ecology provides many metrics and methods to study the composition and configuration of habitats, but they need to be adapted for fishes in river environments or riverscapes. For example, hydrographic distance seems more appropriate than Euclidean distance for measuring distances between vital habitats in riverscapes. We adapted some metrics to assess habitats patterns of a threatened cyprinid species (Barbus barbus) for natural and artificial riverscapes of the Seine river, France. Composition metrics provided essential quantification of the relative abundance of the vital habitats, whereas configuration metrics were relevant to quantify their spatial arrangement and spatial relationships. Nearest-neighbor hydrographic distance was useful to evaluate the influence of flow variability in the natural riverscape, but was not relevant to discriminate the artificial riverscape from the natural one. Conversely, a proximity index revealed high fragmentation in the artificial riverscape. Spatial habitat relationships between feeding and resting habitats, evaluated with a moving window analysis, provided a map of daily activity patches and emphasized the gaps in the biological continuity of the riverscape. The spatial metrics and methods we adapted to the particularities of the Seine river allowed us to detect natural and artificial variability in fish habitat patterns. They should help in evaluating impacts of habitat alteration and isolation and prioritize preservation and restoration policies in human-impacted rivers. Copyright © 2008 John Wiley & Sons, Ltd. [source] The relative importance of local conditions and regional processes in structuring aquatic plant communitiesFRESHWATER BIOLOGY, Issue 5 2010ROBERT S. CAPERS Summary 1. The structure of biological communities reflects the influence of both local environmental conditions and processes such as dispersal that create patterns in species' distribution across a region. 2. We extend explicit tests of the relative importance of local environmental conditions and regional spatial processes to aquatic plants, a group traditionally thought to be little limited by dispersal. We used partial canonical correspondence analysis and partial Mantel tests to analyse data from 98 lakes and ponds across Connecticut (northeastern United States). 3. We found that aquatic plant community structure reflects the influence of local conditions (pH, conductivity, water clarity, lake area, maximum depth) as well as regional processes. 4. Only 27% of variation in a presence/absence matrix was explained by environmental conditions and spatial processes such as dispersal. Of the total explained, 45% was related to environmental conditions and 40% to spatial processes. 5. Jaccard similarity declined with Euclidean distance between lakes, even after accounting for the increasing difference in environmental conditions, suggesting that dispersal limitation may influence community composition in the region. 6. The distribution of distances among lakes where species occurred was associated with dispersal-related functional traits, providing additional evidence that dispersal ability varies among species in ways that affect community composition. 7. Although environmental and spatial variables explained a significant amount of variation in community structure, a substantial amount of stochasticity also affects these communities, probably associated with unpredictable colonisation and persistence of the plants. [source] A new index of habitat alteration and a comparison of approaches to predict stream habitat conditionsFRESHWATER BIOLOGY, Issue 10 2007BRIAN FRAPPIER Summary 1. Stream habitat quality assessment complements biological assessment by providing a mechanism for ruling out habitat degradation as a potential stressor and provides reference targets for the physical aspects of stream restoration projects. This study analysed five approaches for predicting habitat conditions based on discriminant function, linear regressions, ordination and nearest neighbour analyses. 2. Quantitative physical and chemical habitat and riparian conditions in minimally-impacted streams in New Hampshire were estimated using United States Environmental Protection Agency's Environmental Monitoring and Assessment Program protocols. Catchment-scale descriptors were used to predict segment-scale stream channel and riparian habitat, and the accuracy and precision of the different modelling approaches were compared. 3. A new assessment index comparing and summarizing the degree of correspondence between predicted and observed habitat based on Euclidean distance between the standardized habitat factors is described. Higher index scores (i.e. greater Euclidean distance) would suggest a greater deviation in habitat between observed conditions and expected reference conditions. As in most biotic indices, the range in index scores in reference sites would constitute a situation equivalent to reference conditions. This new index avoids the erroneous prediction of multiple, mutually exclusive habitat conditions that have confounded previous habitat assessment approaches. 4. Separate linear regression models for each habitat descriptor yielded the most accurate and precise prediction of reference conditions, with a coefficient of variation (CV) between predictions and observations for all reference sites of 0.269. However, for a unified implementation in regions where a classification-based approach has already been taken for biological assessment, a discriminant analysis approach, that predicted membership in biotic communities and compared the mean habitat features in the biotic communities with the observed habitat features, was similar in prediction accuracy and precision (CV = 0.293). 5. The best model had an error of 27% of the mean index value for the reference sites, indicating substantial room for improvement. Additional catchment characteristics not readily available for this analysis, such as average rainfall or winter snow-pack, surficial geological characteristics or past land-use history, may improve the precision of the predicted habitat features in the reference streams. Land-use history in New Hampshire and regional environmental impacts have greatly impacted stream habitat conditions even in streams considered minimally-impacted today; thus as regional environmental impacts change and riparian forests mature, reference habitat conditions should be re-evaluated. [source] On open-set lattices and some of their applications in semanticsINTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, Issue 12 2003Mouw-Ching Tjiok In this article, we present the theory of Kripke semantics, along with the mathematical framework and applications of Kripke semantics. We take the Kripke-Sato approach to define the knowledge operator in relation to Hintikka's possible worlds model, which is an application of the semantics of intuitionistic logic and modal logic. The applications are interesting from the viewpoint of agent interactives and process interaction. We propose (i) an application of possible worlds semantics, which enables the evaluation of the truth value of a conditional sentence without explicitly defining the operator "," (implication), through clustering on the space of events (worlds) using the notion of neighborhood; and (ii) a semantical approach to treat discrete dynamic process using Kripke-Beth semantics. Starting from the topological approach, we define the measure-theoretical machinery, in particular, we adopt the methods developed in stochastic process,mainly the martingale,to our semantics; this involves some Boolean algebraic (BA) manipulations. The clustering on the space of events (worlds), using the notion of neighborhood, enables us to define an accessibility relation that is necessary for the evaluation of the conditional sentence. Our approach is by taking the neighborhood as an open set and looking at topological properties using metric space, in particular, the so-called ,-ball; then, we can perform the implication by computing Euclidean distance, whenever we introduce a certain enumerative scheme to transform the semantic objects into mathematical objects. Thus, this method provides an approach to quantify semantic notions. Combining with modal operators Ki operating on E set, it provides a more-computable way to recognize the "indistinguishability" in some applications, e.g., electronic catalogue. Because semantics used in this context is a local matter, we also propose the application of sheaf theory for passing local information to global information. By looking at Kripke interpretation as a function with values in an open-set lattice ,,U, which is formed by stepwise verification process, we obtain a topological space structure. Now, using the measure-theoretical approach by taking the Borel set and Borel function in defining measurable functions, this can be extended to treat the dynamical aspect of processes; from the stochastic process, considered as a family of random variables over a measure space (the probability space triple), we draw two strong parallels between Kripke semantics and stochastic process (mainly martingales): first, the strong affinity of Kripke-Beth path semantics and time path of the process; and second, the treatment of time as parametrization to the dynamic process using the technique of filtration, adapted process, and progressive process. The technique provides very effective manipulation of BA in the form of random variables and ,-subalgebra under the cover of measurable functions. This enables us to adopt the computational algorithms obtained for stochastic processes to path semantics. Besides, using the technique of measurable functions, we indeed obtain an intrinsic way to introduce the notion of time sequence. © 2003 Wiley Periodicals, Inc. [source] Migration strategies of sylviid warblers: chance patterns or community dynamics?JOURNAL OF AVIAN BIOLOGY, Issue 1 2000Peter Howlett The effects of community dynamics in birds on the optimisation of their migratory strategies is a neglected area. For three years, we captured migrating warblers on autumn passage at a coastal site in western Britain. We used canonical correspondence analysis (CCA) to assess spatio-temporal patterns of occurrence, and principal components analysis (PCA) to assess morphological variation. We calculated Euclidean distance in ordination and morphological space to assess separation between species pairs, and used Monte-Carlo simulations to assess the probability of pattern occurring by chance. Ordination revealed five species-groups separated by habitat type and time of passage. Reed Warbler Acrocephalus scirpaceus and Sedge Warbler A. schoenobaenus (Group 1) occurred in wet habitats and peaked simultaneously. In drier habitats with scrub, a first wave of Blackcap Sylvia atricapilla (Group 2) significantly preceded Grasshopper Warbler Locustella naevia, Willow Warbler Phylloscopus trochilus, Whitethroat Sylvia communis and Lesser Whitethroat Sylvia curruca (Group 3), which in all but one case (Lesser Whitethroat) significantly preceded Garden Warbler Sylvia borin (Group 4); peak numbers of Chiffchaffs Phylloscopus collybita and a second wave of Blackcaps (Group 5) occurred later still. Age effects were found only in Acrocephalus, with adults peaking before juveniles. For seven out of eight pairings within genera, separation in time of passage increased significantly in species that were morphologically similar. The only exception was Blackcap and Lesser Whitethroat which differed substantially in both passage time and morphology. Monte-Carlo simulations showed that chance was unlikely to be responsible for ordination patterns, nor for inter-specific variation in passage time and its relationship with species morphology. These data provide annually consistent evidence that migrating sylviid warblers are separated ecologically by habitat use, time of passage and morphology: we cannot refute the hypothesis that community dynamics have influenced niche use and autumn migratory strategy. We call for further tests of the ,migrant interaction' hypothesis in other geographical locations and taxa, particularly where migrants are allopatric and interact ecologically only on migration. [source] Model-based biological Raman spectral imagingJOURNAL OF CELLULAR BIOCHEMISTRY, Issue S39 2002Karen E. Shafer-Peltier Abstract Raman spectral imaging is a powerful tool for determining chemical information in a biological specimen. The challenge is to condense the large amount of spectral information into an easily visualized form with high information content. Researchers have applied a range of techniques, from peak-height ratios to sophisticated models, to produce interpretable Raman images. The purpose of this article is to review some of the more common imaging approaches, in particular principal components analysis, multivariate curve resolution, and Euclidean distance, as well as to present a new technique, morphological modeling. How to best extract meaningful chemical information using each imaging approach will be discussed and examples of images produced with each will be shown. J. Cell. Biochem. Suppl. 39: 125,137, 2002. © 2002 Wiley-Liss, Inc. [source] Euclid: Strategic alternative assessment matrixJOURNAL OF MULTI CRITERIA DECISION ANALYSIS, Issue 2 2002Madjid Tavana Abstract The vast amount of information that must be considered to solve inherently ill-structured and complex strategic problems creates a need for tools to help decision makers (DMs) recognize the complexity of this process and develop a rational model for strategy evaluation. Over the last several decades, a philosophy and a body of intuitive and analytical methods have been developed to assist DMs in the evaluation of strategic alternatives. However, the intuitive methods lack a structured framework for the systematic evaluation of strategic alternatives while the analytical methods are not intended to capture intuitive preferences. Euclid is a simple and yet sophisticated multiobjective value analysis model that attempts to uncover some of the complexities inherent in the evaluation of strategic alternatives. The proposed model uses a series of intuitive and analytical methods including environmental scanning, the analytic hierarchy process (AHP), subjective probabilities, and the theory of displaced ideal, to plot strategic alternatives on a matrix based on their Euclidean distance from the ideal alternative. Euclid is further compared to the quantitative strategic planning matrix (QSPM) in a real world application. The information provided by the users shows that Euclid can significantly enhance decision quality and the DM's confidence. Euclid is not intended to replace the DMs, rather, it provides a systematic approach to support, supplement, and ensure the internal consistency of their judgments through a series of logically sound techniques. Copyright © 2003 John Wiley & Sons, Ltd. [source] Multivariate exploratory analysis of ordinal data in ecology: Pitfalls, problems and solutionsJOURNAL OF VEGETATION SCIENCE, Issue 5 2005János Podani Abstract Questions: Are ordinal data appropriately treated by multivariate methods in numerical ecology? If not, what are the most common mistakes? Which dissimilarity coefficients, ordination and classification methods are best suited to ordinal data? Should we worry about such problems at all? Methods: A new classification model family, OrdClAn (Ordinal Cluster Analysis), is suggested for hierarchical and non-hierarchical classifications from ordinal ecological data, e.g. the abundance/dominance scores that are commonly recorded in relevés. During the clustering process, the objects are grouped so as to minimize a measure calculated from the ranks of within-cluster and between-cluster distances or dissimilarities. Results and Conclusions: Evaluation of the various steps of exploratory data analysis of ordinal ecological data shows that consistency of methodology throughout the study is of primary importance. In an optimal situation, each methodological step is order invariant. This property ensures that the results are independent of changes not affecting ordinal relationships, and guarantees that no illusory precision is introduced into the analysis. However, the multivariate procedures that are most commonly applied in numerical ecology do not satisfy these requirements and are therefore not recommended. For example, it is inappropriate to analyse Braun-Blanquet abudance/dominance data by methods assuming that Euclidean distance is meaningful. The solution of all problems is that the dissimilarity coefficient should be compatible with ordinal variables and the subsequent ordination or clustering method should consider only the rank order of dissimilarities. A range of artificial data sets exemplifying different subtypes of ordinal variables, e.g. indicator values or species scores from relevés, illustrate the advocated approach. Detailed analyses of an actual phytosociological data set demonstrate the classification by OrdClAn of relevés and species and the subsequent tabular rearrangement, in a numerical study remaining within the ordinal domain from the first step to the last. [source] Scaling turbulent atmospheric stratification.THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 631 2008I: Turbulence, waves Abstract In this first of a three-part series, we argue that the dynamics of turbulence in a stratified atmosphere should depend on the buoyancy over a wide range of vertical scales and on energy flux over a wide range of horizontal scales; it should be scaling, but anisotropic, not isotropic. We compare the leading statistical theories of atmospheric stratification which are conveniently distinguished by the elliptical dimension Ds which quantifies their degree of spatial stratification. This includes the mainstream isotropic 2-D (large scales), isotropic 3-D (small scales) theory but also the more recent linear gravity wave theories (Ds = 7/3) and the classical fractionally integrated flux (FIF) 23/9-D unified scaling model. In the latter, the horizontal wind has a k,5/3 spectrum as a function of horizontal wavenumber determined by the energy flux and a k,11/5 energy spectrum as a function of vertical wavenumber determined by the buoyancy force variance flux. In this model, the physically important notion of scale is determined by the turbulent dynamics, it is not given a priori (i.e. the by usual Euclidean distance). The 23/9-D FIF model is the most physically and empirically satisfying, being based on turbulent (spectral) fluxes. The FIF model as originally proposed by Schertzer and Lovejoy is actually a vast family of scaling models broadly compatible with turbulent phenomenology and with the classical turbulent laws of Kolmogorov, Corrsin and Obukov. However, until now it has mostly been developed on the basis of structures localized in space,time. In this paper, we show how to construct extreme FIF models with wave-like structures which are localized in space but unlocalized in space,time, as well as a continuous family of intermediate models which are akin to Lumley,Shur models in which some part of the localized turbulent energy ,leaks' into unlocalized waves. The key point is that the FIF requires two propagators (space,time Green's functions) which can be somewhat different. The first determines the space,time structure of the cascade of fluxes; this must be localized in space,time in order to satisfy the usual turbulence phenomenology. In contrast, the second propagator relates the turbulent fluxes to the observables; although the spatial part of the propagator is localized as before, in space,time it can be unlocalized. (It is still localized in space, now in wave packets.) We display numerical simulations which demonstrate the requisite (anisotropic, multifractal) statistical properties as well as wave-like phenomenologies. In parts II and III we will examine the empirical evidence for the spatial and temporal parts, respectively, of the model using state-of-the-art lidar data of aerosol backscatter ratios (which we use as a surrogate for passive scalar concentration). Copyright © 2008 Royal Meteorological Society [source] Using Empirical Likelihood to Combine Data: Application to Food Risk AssessmentBIOMETRICS, Issue 1 2009Amélie Crépet Summary This article introduces an original methodology based on empirical likelihood, which aims at combining different food contamination and consumption surveys to provide risk managers with a risk measure, taking into account all the available information. This risk index is defined as the probability that exposure to a contaminant exceeds a safe dose. It is naturally expressed as a nonlinear functional of the different consumption and contamination distributions, more precisely as a generalized U-statistic. This nonlinearity and the huge size of the data sets make direct computation of the problem unfeasible. Using linearization techniques and incomplete versions of the U-statistic, a tractable "approximated" empirical likelihood program is solved yielding asymptotic confidence intervals for the risk index. An alternative "Euclidean likelihood program" is also considered, replacing the Kullback,Leibler distance involved in the empirical likelihood by the Euclidean distance. Both methodologies are tested on simulated data and applied to assess the risk due to the presence of methyl mercury in fish and other seafood. [source] Bayesian Shrinkage Estimation of the Relative Abundance of mRNA Transcripts Using SAGEBIOMETRICS, Issue 3 2003Jeffrey S. Morris Summary. Serial analysis of gene expression (SAGE) is a technology for quantifying gene expression in biological tissue that yields count data that can be modeled by a multinomial distribution with two characteristics: skewness in the relative frequencies and small sample size relative to the dimension. As a result of these characteristics, a given SAGE sample may fail to capture a large number of expressed mRNA species present in the tissue. Empirical estimators of mRNA species' relative abundance effectively ignore these missing species, and as a result tend to overestimate the abundance of the scarce observed species comprising a vast majority of the total. We have developed a new Bayesian estimation procedure that quantifies our prior information about these characteristics, yielding a nonlinear shrinkage estimator with efficiency advantages over the MLE. Our prior is mixture of Dirichlets, whereby species are stochastically partitioned into abundant and scarce classes, each with its own multivariate prior. Simulation studies reveal our estimator has lower integrated mean squared error (IMSE) than the MLE for the SAGE scenarios simulated, and yields relative abundance profiles closer in Euclidean distance to the truth for all samples simulated. We apply our method to a SAGE library of normal colon tissue, and discuss its implications for assessing differential expression. [source] Scale dependence of spatial patterns and cartography on the detection of landscape change: relationships with species' perceptionECOGRAPHY, Issue 4 2002Susana Suárez-Seoane This paper analyses how landscape pattern detection changes when different spatial and temporal scales and several levels of detail of the cartography are used to describe a landscape affected by land abandonment in northern Spain. In order to integrate landscape composition and structure at different temporal and spatial scales in the same framework, a multiple correspondence factorial analysis was ran for each typology of landscape units. Annual rates of change and scale dependencies were calculated for each typology from the Euclidean distances in the factorial space. Finally, the potential assessment of habitat utilisation by species with different landscape perception and movement capacity was modelled for the range of typologies. The amount of variance explained by the factorial analysis decreased with the complexity of the typology. Annual rates of change appeared different according to the time span and the detail of the landscape unit typology used. For all typologies, changes were faster during 1983,95, a period characterised by massive land abandonment. However, when the whole period (1956,95) was considered, annual changes were much lower, showing differences between typologies. As a general trend, the variance of the mean annual change decreased with the size of the analysis units. In response to land abandonment, different scale dependencies were found for different levels of detail of the cartography. Coarser typologies are suitable when analysing highly mobile species. However, species with small movement capacity or with a preference for homogeneous habitats perceive more detail in landscape. In this case, a detailed typology is more appropriate. [source] Tree search algorithm for assigning cooperating UAVs to multiple tasksINTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 2 2008Steven J. Rasmussen Abstract This paper describes a tree search algorithm for assigning cooperating homogeneous uninhabited aerial vehicles to multiple tasks. The combinatorial optimization problem is posed in the form of a decision tree, the structure of which enforces the required group coordination and precedence for cooperatively performing the multiple tasks. For path planning, a Dubin's car model is used so that the vehicles' constraint, of minimum turning radius, is taken into account. Due to the prohibitive computational complexity of the problem, exhaustive enumeration of all the assignments encoded in the tree is not feasible. The proposed optimization algorithm is initialized by a best-first search and candidate optimal solutions serve as a monotonically decreasing upper bound for the assignment cost. Euclidean distances are used for estimating the path length encoded in branches of the tree that have not yet been evaluated by the computationally intensive Dubin's optimization subroutine. This provides a lower bound for the cost of unevaluated assignments. We apply these upper and lower bounding procedures iteratively on active subsets within the feasible set, enabling efficient pruning of the solution tree. Using Monte Carlo simulations, the performance of the search algorithm is analyzed for two different cost functions and different limits on the vehicles' minimum turn radius. It is shown that the selection of the cost function and the limit have a considerable effect on the level of cooperation between the vehicles. The proposed deterministic search method can be applied on line to different sized problems. For small-sized problems, it provides the optimal solution. For large-sized problems, it provides an immediate feasible solution that improves over the algorithm's run time. When the proposed method is applied off line, it can be used to obtain the optimal solution, which can be used to evaluate the performance of other sub-optimal search methods. Copyright © 2007 John Wiley & Sons, Ltd. [source] Fish assemblages of the Casiquiare River, a corridor and zoogeographical filter for dispersal between the Orinoco and Amazon basinsJOURNAL OF BIOGEOGRAPHY, Issue 9 2008Kirk O. Winemiller Abstract Aim, The aim of this study was to determine whether the Casiquiare River functions as a free dispersal corridor or as a partial barrier (i.e. filter) for the interchange of fish species of the Orinoco and Negro/Amazon basins using species assemblage patterns according to geographical location and environmental features. Location, The Casiquiare, Upper Orinoco and Upper Negro rivers in southern Venezuela, South America. Methods, Our study was based on an analysis of species presence/absence data and environmental information (11 habitat characteristics) collected by the authors and colleagues between the years 1984 and 1999. The data set consisted of 269 sampled sites and 452 fish species (> 50,000 specimens). A wide range of habitat types was included in the samples, and the collection sites were located at various points along the entire length of the Casiquiare main channel, at multiple sites on its tributary streams, as well as at various nearby sites outside the Casiquiare drainage, within the Upper Orinoco and Upper Rio Negro river systems. Most specimens and field data used in this analysis are archived in the Museo de Ciencias Naturales in Guanare, Venezuela. We performed canonical correspondence analysis (CCA) based on species presence/absence using two versions of the data set: one that eliminated sites having < 5 species and species occurring at < 5 sites; and another that eliminated sites having < 10 species and species occurring at < 10 sites. Cluster analysis was performed on sites based on species assemblage similarity, and a separate analysis was performed on species based on CCA loadings. Results, The CCA results for the two versions of the data set were qualitatively the same. The dominant environmental axis contrasted assemblages and sites associated with blackwater vs. clearwater conditions. Longitudinal position on the Casiquiare River was correlated (r2 = 0.33) with CCA axis-1 scores, reflecting clearwater conditions nearer to its origin (bifurcation of the Orinoco) and blackwater conditions nearer to its mouth (junction with the Rio Negro). The second CCA axis was most strongly associated with habitat size and structural complexity. Species associations derived from the unweighted pair-group average clustering method and pair-wise squared Euclidean distances calculated from species loadings on CCA axes 1 and 2 showed seven ecological groupings. Cluster analysis of species assemblages according to watershed revealed a stronger influence of local environmental conditions than of geographical proximity. Main conclusions, Fish assemblage composition is more consistently associated with local environmental conditions than with geographical position within the river drainages. Nonetheless, the results support the hypothesis that the mainstem Casiquiare represents a hydrochemical gradient between clearwaters at its origin and blackwaters at its mouth, and as such appears to function as a semi-permeable barrier (environmental filter) to dispersal and faunal exchanges between the partially vicariant fish faunas of the Upper Orinoco and Upper Negro rivers. [source] |