Duplex Stainless Steels (duplex + stainless_steel)

Distribution by Scientific Domains


Selected Abstracts


Study of Fatigue Damage Micromechanisms in a Duplex Stainless Steel by Complementary Analysis Techniques

ADVANCED ENGINEERING MATERIALS, Issue 9 2009
Ahmed El Bartali
The low-cycle fatigue (LCF) damage micromechanisms are studied in a duplex stainless steel at room temperature using complementary analysis techniques. Surface damage is observed in real-time with an in-situ microscopic device during a low-cycle fatigue test. Slip systems activated in each grain in each phase are identified from SEM photographs and EBSD measurements. The surface relief appeared at the end of the test is measured with an interferometric profilometer. Displacement and strain fields on the microstructural scale are calculated using DIC technique from surface images taken during cycling. Observations were combined to analyse damage mechanisms from slip marking appearance to strain localisation and crack initiation. [source]


Fatigue damage analysis in a duplex stainless steel by digital image correlation technique

FATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 2 2008
A. EL BARTALI
ABSTRACT Strain field measurements by digital image correlation today offer new possibilities for analysing the mechanical behaviour of materials in situ during mechanical tests. The originality of the present study is to use this technique on the micro-structural scale, in order to understand and to obtain quantitative values of the fatigue surface damage in a two-phased alloy. In this paper, low-cycle fatigue damage micromechanisms in an austenitic-ferritic stainless steel are studied. Surface damage is observed in real time, with an in situ microscopic device, during a low-cycle fatigue test performed at room temperature. Surface displacement and strain fields are calculated using digital image correlation from images taken during cycling. A detailed analysis of optical images and strain fields measured enables us to follow precisely the evolution of surface strain fields and the damage micromechanisms. Firstly, strain heterogeneities are observed in austenitic grains. Initially, the austenitic phase accommodates the cyclic plastic strain and is then followed by the ferritic phase. Microcrack initiation takes place at the ferrite/ferrite grain boundaries. Microcracks propagate to the neighbouring austenitic grains following the slip markings. Displacement and strain gradients indicate probable microcrack initiation sites. [source]


Electrolytic pickling of duplex stainless steel

MATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 8 2005
N. Ipek
Abstract Pickling of duplex stainless steels has proved to be much more difficult than that of standard austenitic grades. Electrolytic pre-pickling is shown to be a key process towards facilitating the pickling process for material annealed both in the production-line and in laboratory experiments. The mechanism for the neutral electrolytic process on duplex 2205 and austenitic 316 steels has been examined and the oxide scale found to become thinner as a function of electrolytic pickling time. Spallation or peeling of the oxide induced by gas evolution did not play a decisive role. A maximum of about 20% of the current supplied to the oxidised steel surface goes to dissolution reactions whereas about 80% of the current was consumed in oxygen gas production. This makes the current utilisation very poor, particularly against the background of reports that in indirect electrolytic pickling only about 30% of the total current, supplied to the process, actually goes into the strip. A parametric study was therefore carried out to determine whether adjustment of process variables could improve the current utilisation. [source]


Determination of the weaker phase in the pitting corrosion of non-standard low-Ni high-Mn-N duplex stainless steels

MATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 2 2004
R. Merello
Abstract In this paper, the use of Energy Dispersive Spectrometry (EDS) is proposed to determine the partition coefficients of the elements of a new family of duplex stainless steels that are characterized by having low contents of nickel, together with high levels of manganese and nitrogen. From the values of the partition coefficients, the chemical compositions of the constituting phases have been determined, in order subsequently to calculate the value of the Pitting Resistance Equivalent Number (PREN) of each phase. The proposition put forward in this study is that the phase having the lower PREN determines the pitting corrosion behaviour of these types of steels. Results obtained by means of optical and scanning electron microscopy have provided confirmation that the pitting corrosion behaviour of these new materials gets determined by the resistance of the weaker phase and consequently by the phase having the lower PREN value. Lastly it has been proved possible to determine the existence of an exponential relationship between the alloys pitting potential (Ep) and the weaker phase PREN; this can be utilized for the low-nickel duplex stainless steels design in which the pitting corrosion resistance is controlled. [source]