Droplet Formation (droplet + formation)

Distribution by Scientific Domains


Selected Abstracts


Synthesis of oily core-hybrid shell nanocapsules through interfacial free radical copolymerization in miniemulsion: Droplet formation and nucleation

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 3 2010
Z. H. Cao
Abstract Nanocapsules with an oily core and an organic/inorganic hybrid shell were elaborated by miniemulsion (co)polymerization of styrene, divinylbenzene, ,-methacryloyloxy propyl trimethoxysilane, and N -isopropyl acrylamide. The hybrid copolymer shell membrane was formed by polymerization-induced phase separation at the interface of the oily nanodroplets with water. It was shown that the size, size distribution, and colloidal stability of the miniemulsion droplets were extremely dependent on the nature of the oil phase, the monomer content and the surfactant concentration. The less water-soluble the hydrocarbon template and the higher the monomer content, the better the droplet stability. The successful formation of nanocapsules with the targeted core-shell morphology (i.e., a liquid core surrounded by a solid shell) was evidenced by cryogenic transmission electron microscopy. Both nanocapsules and nanoparticles were produced by polymerization of the miniemulsion droplets. The proportion of nanoparticles increased with increasing monomer concentration in the oil phase. These undesirable nanoparticles were presumably formed by homogeneous nucleation as we showed that micellar nucleation could be neglected under our experimental conditions even for high surfactant concentrations. The introduction of ,-methacryloyloxy propyl trimethoxysilane was considered to be the main reason for homogeneous nucleation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 593,603, 2010 [source]


A review of the background, operating parameters and applications of microemulsion liquid chromatography (MELC)

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 15 2005
A. Marsh
Abstract Microemulsions are dispersions of nanometre-sized droplets of an immiscible liquid within another liquid. Droplet formation is facilitated by the addition of surfactants and often also cosurfactants. Microemulsions are classified as either oil-in-water (O/W) (oil droplets such as octane dispersed throughout aqueous buffer) or water-in-oil (W/O) (aqueous droplets in oil such as hexane). Both microemulsion types have been used as mobile phases for separation in microemulsion HPLC (MELC). There has been a recent increase of interest in this area with new applications and developments such as gradient elution and optimisation of methods using experimental design. O/W microemulsions have been employed as eluents for RP-HPLC while W/O microemulsions have been used for normal phase chromatography. Separations can have superior speed and efficiency to conventional HPLC modes while offering a unique selectivity with excellent resolution. The capability for quantitative and stability-indicating analysis has also been demonstrated. Specific advantages include the ability to operate at low UV wavelengths and elimination of the need for an equilibration rinse between gradients. Operational issues associated with the use of MELC have been identified including the need to add salt to the gradient eluent, relatively high back-pressures and increased need for equipment cleaning compared to conventional RP eluent. This report details the different microemulsion types and compositions used and their reported applications. The use of gradient and isocratic elution is described. The effects on separations of varying operating parameters such as temperature, oil type and concentration, surfactant type and concentration, sample solvent, column type, and organic solvent addition will be discussed and illustrated. [source]


Approaches for the coating of capillary columns with highly phenylated stationary phases for high-temperature GC

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 4 2004
Bernhard X. Mayer-Helm
Abstract Two highly phenylated tetramethyl- p -silphenylene,diphenylsiloxane copolymers were coated on fused silica capillary columns and used as stationary phases in GC. The copolymers offered new insights into the coating process and column preparation due to their physicochemical properties. The fused silica capillary surface had to be pretreated in various ways to achieve a homogeneous film and a well deactivated surface: etching with ammonium bifluoride; leaching with sodium hydroxide and hydrochloric acid; silylation with tetraphenyldimethyldisilazane and triphenylsilylamine. Droplet formation was observed on tetraphenyldimethyldisilazane silylated surfaces leading to capillary columns with low separation efficiency. The topology of inhomogeneous films was investigated by light microscopy, scanning electron microscopy, and Auger electron spectroscopy. It became apparent that the stationary phase did not form droplets but islands, which are connected by a wetting layer according to the Stranski-Krastanov growth mode. Both copolymers are potential stationary phases for high-temperature GC with promising properties. They offer a higher overall polarity than 75% phenyl, 25% methyl-polysiloxanes in combination with increased thermal stability and reduced bleed levels. [source]


Thermodynamic Properties and Plasma Phase Transition in dense Hydrogen

CONTRIBUTIONS TO PLASMA PHYSICS, Issue 5-6 2004
V. S. Filinov
Abstract The internal energy and equation of state of dense hydrogen are investigated by direct path integral Monte Carlo method simulations which are further improved in comparison to our previous results. Data for four isotherms , T = 10, 000K, 30, 000K, 50, 000K, and 100, 000K , are presented. For T = 10, 000K it is shown that the internal energy is lowered due to droplet formation for densities of the order 1023cm,3 giving direct support for the existence of a plasma phase transition in megabar hydrogen. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


A descriptive force-balance model for droplet formation at microfluidic Y-junctions

AICHE JOURNAL, Issue 10 2010
Maartje L. J. Steegmans
Abstract In a previous article, we studied the basics of emulsification in microfluidic Y-junctions, however, without considering the effect of viscosity of the disperse phase. As it is known from investigations on many different microstructures that viscosity and viscosity ratio are governing parameters for droplet size, we here investigate whether this is also the case for microfluidic Y-junctions and do so for a wide range of process conditions. The investigated Y-junctions have a width of 19.9 or 12.8 ,m and a depth of 5.0 ,m, and the formed monodisperse droplets (CV < 1%) are between 3 and 20 ,m. We varied the disperse-phase viscosity using different oils (1,105 mPa s), and continuous-phase viscosity using glycerol,water and ethanol,water mixtures (1.0,6.2 mPa s), which corresponds to disperse-to-continuous-phase viscosity ratios from 0.4 to 105.0. Through the variation of the liquids, also a range in interfacial tensions (12,55 mN m,1) is assessed. The disperse-phase flow rate is varied from 0.039 to 18.0 ,L h,1, the continuous-phase flow rate from 1.39 ,L h,1 to 0.41 mL h,1, and this corresponds to flow rate ratios from 1.1 × 10,3 to 0.14, which is once again based on wide range of conditions. For all these conditions, in which droplets are formed in the dripping and jetting regime, the droplet size could be described with a model based on the existing force-balance model, but now extended to incorporate the cross-sectional area of the droplet and the resistance with the wall. Surprisingly enough, it was found that the droplet size is not influenced by the disperse-phase viscosity, or the viscosity ratio, but it is dominated by the resistance with the wall and the continuous-phase properties. Because of this, emulsification with Y-junctions is intrinsically simpler than any other shear-based method as droplet size is only determined by the continuous phase. © 2010 American Institute of Chemical Engineers AIChE J, 2010 [source]


Morphology development during blending of immiscible polymers in screw extruders

POLYMER ENGINEERING & SCIENCE, Issue 6 2002
Sandeep Tyagi
The present work reports evolution of morphology from initial (presence of striation) to final (droplet formation) stages in a single-screw extruder. Morphology development during the blending process controls the final size of the dispersed phase, which in turn significantly affects the properties of the blends. The experiments were carried out using a 70/30 wt% polypropylene/ethylene vinyl acetate (PP/EVA) blend; samples were collected along the length of the screw, by screw pullout experiment, to analyze the size and size distribution of the dispersed phase present both as striated layers and subsequently as droplets. Average size of the dispersed phase and standard deviation were taken into account to monitor the morphology evolution along the length of the screw. Pre-breakup morphology development was studied by analyzing the sample collected from the feed zone of the extruder in terms of upper and lower layers along the cross section of screw channel. Examination of micrographs revealed the existence of pattern of ordered striations along the length of the melting zone containing striations from average size of 1000 ,m down to 50 ,m decreasing rapidly along the length of the screw. The breakup process was captured at the start of compression zone where step-up in the shear as well as elongational flow was applied due to decrease in the channel depth along the compression zone. The observed droplet size formed by the breakup of filaments is found to be in accordance with theory. The final droplet size is found to be governed by the emulsification process occurring as a result of stretching, breakup and coalescence in the metering section of the screw and is in the order of 2 ,m. [source]


The novel ruthenium,, -linolenic complex [Ru2(aGLA)4Cl] inhibits C6 rat glioma cell proliferation and induces changes in mitochondrial membrane potential, increased reactive oxygen species generation and apoptosis in vitro

CELL BIOCHEMISTRY AND FUNCTION, Issue 1 2010
Geise Ribeiro
Abstract The present study reports the synthesis of a novel compound with the formula [Ru2(aGLA)4Cl] according to elemental analyses data, referred to as Ru2GLA. The electronic spectra of Ru2GLA is typical of a mixed valent diruthenium(II,III) carboxylate. Ru2GLA was synthesized with the aim of combining and possibly improving the anti-tumour properties of the two active components ruthenium and , -linolenic acid (GLA). The properties of Ru2GLA were tested in C6 rat glioma cells by analysing cell number, viability, lipid droplet formation, apoptosis, cell cycle distribution, mitochondrial membrane potential and reactive oxygen species. Ru2GLA inhibited cell proliferation in a time and concentration dependent manner. Nile Red staining suggested that Ru2GLA enters the cells and ICP-AES elemental analysis found an increase in ruthenium from <0.02 to 425,mg/Kg in treated cells. The sub-G1 apoptotic cell population was increased by Ru2GLA (22,±,5.2%) when analysed by FACS and this was confirmed by Hoechst staining of nuclei. Mitochondrial membrane potential was decreased in the presence of Ru2GLA (44,±,2.3%). In contrast, the cells which maintained a high mitochondrial membrane potential had an increase (18,±,1.5%) in reactive oxygen species generation. Both decreased mitochondrial membrane potential and increased reactive oxygen species generation may be involved in triggering apoptosis in Ru2GLA exposed cells. The EC50 for Ru2GLA decreased with increasing time of exposure from 285,µM at 24,h, 211,µM at 48,h to 81,µM at 72,h. In conclusion, Ru2GLA is a novel drug with antiproliferative properties in C6 glioma cells and is a potential candidate for novel therapies in gliomas. Copyright © 2009 John Wiley & Sons, Ltd. [source]