Home About us Contact | |||
Droplet Diameter (droplet + diameter)
Selected AbstractsPrimary particle size distribution of eroded material affected by degree of aggregate slaking and seal developmentEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 1 2009D. N. Warrington Summary Primary particle size distribution (PSD) of eroded sediment can be used to estimate potential nutrient losses from soil and pollution hazards to the environment. We studied eroded sediment PSDs from three saturated soils, packed in trays (20 × 40 × 4 cm), that had undergone either minimal aggregate slaking (MAS) or severe aggregate slaking (SAS) prior to a 60 mm simulated rainstorm (kinetic energy, 15.9 kJ m,3; droplet diameter, 2.97 mm) and collected runoff at regular intervals. The degree of aggregate slaking was controlled by the rate at which soils were wetted to saturation. The PSDs of eroded materials and of parent soils were determined using a laser particle size analyser. For each soil, PSD frequency curves of eroded sediments and parent soils were generally of a similar shape but most eroded sediments had larger clay contents than their parent soils. In the SAS treatment, cumulative clay enrichment in the eroded materials was inversely related to the parent soil clay content, these being 28.5, 26.6 and 22.8% richer in clay than their parent soils for the loam, sandy clay and clay, respectively. Generally, total clay loss was greater from soils with SAS than from those with MAS because of erosion rates; however, clay enrichment of sediments, compared with parent soil clay contents, was mostly greater in samples with MAS. Greater clay enrichment took place during the early seal development stage in the loam, but could not readily be associated with specific stages of seal development for the clay. In the sandy clay, the relation between seal development and clay enrichment in the eroded material depended on the initial degree of aggregate slaking. The observed large preferential loss of clay by erosion in cultivated soils re-emphasizes the need to employ erosion control measures. [source] The membrane emulsification process,a reviewJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 3 2004C Charcosset Abstract Membrane emulsification has received increasing attention over the last 10 years, with potential applications in many fields. In the membrane emulsification process, a liquid phase is pressed through the membrane pores to form droplets at the permeate side of a membrane; the droplets are then carried away by a continuous phase flowing across the membrane surface. Under specific conditions, monodispersed emulsions can be produced using this technique. The purpose of the present paper is to provide a review on the membrane emulsification process including: principles of membrane emulsification, influence of process parameters and industrial applications. Small-scale applications such as drug delivery systems, food emulsions, and the production of monodispersed microspheres are also included. Compared with conventional techniques for emulsification, membrane processes offer advantages such as control of average droplet diameter by average membrane pore size and lower energy input. Copyright © 2004 Society of Chemical Industry [source] Effects of Various Fiber Additions on Lipid Digestion during,In Vitro,Digestion of Beef PattiesJOURNAL OF FOOD SCIENCE, Issue 9 2009S.J. Hur ABSTRACT:, The purpose of this study was to examine the effect of various fiber additions on lipid digestion during the,in vitro,digestion of beef patties. The control patties were prepared with 90.5% lean meat and 9.5% tallow. Treatments consisted of 90% lean meat with 9.5% tallow and either 0.5% cellulose, 0.5% chitosan, or 0.5% pectin. The beef patties were then passed through an,in vitro,digestion model that simulated the composition of the mouth, stomach, and small intestine juices. The change in structure and properties of the lipid droplets was monitored by laser scanning confocal fluorescence microscopy. In general, there was a decrease in lipid droplet diameter as the droplets moved from mouth to stomach to small intestine. The amount of free fatty acid dramatically increased after,in vitro,digestion in all beef patties. The amount of free fatty acid was, however, lower in beef patties containing chitosan and pectin than other beef patties after,in vitro,digestion. Beef patties containing various fibers had lower thiobarbituric acid-reactive substances (TBARS) values than samples with no fibers. Among the samples to which fibers were added, chitosan and pectin had lower TBARS than beef patties with cellulose. The cholesterol content decreased after,in vitro,digestion in all beef patties but was not different among the beef patties before and after,in vitro,digestion. These results enhance our understanding of the physicochemical and structural changes that occur to ground beef within the gastrointestinal tract. [source] Drug encapsulation using supercritical fluid extraction of emulsionsJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 3 2006P. Chattopadhyay Abstract The current work was aimed at evaluating a new method, supercritical fluid extraction of emulsions (SFEE), for the production of composite (e.g., polymer-drug) micro- and nanoparticles, intended for application in sustained-release drug delivery formulations. Using the proposed method, composite particles were obtained, both in a continuous or batch manner by supercritical carbon dioxide extraction of oil-in-water (o/w) emulsions. Model drugs indomethacin and ketoprofen and biodegradable polymers poly(lactic/glycolic) acid and Eudragit RS were used in order to demonstrate the effectiveness of the SFEE process for producing these particles. Stable aqueous suspensions of composite micro and nanoparticles, having sizes ranging between 0.1 and 2 µm were consistently obtained. Emulsion droplet diameter was found to be the major size control parameter. Other parameters investigated included polymer and drug concentrations in solvent and emulsion solvent fraction. The residual solvent content in the particle suspension obtained was consistently below 50 ppm. Standard dissolution tests were used to observe the sustained release phenomenon of the composite particles. The dissolution profile was characterized in terms of the intrinsic dissolution kinetic coefficients taking into account the specific surface area and solubility of the particles. It was observed that the kinetic coefficient parameter for encapsulated drugs was reduced by 2,4 orders of magnitude when compared to the unprocessed drug particles. © 2006 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 95:667,679, 2006 [source] Droplet Tailoring Using Evaporative Inkjet PrintingMACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 5 2009Jolke Perelaer Abstract An experimental study into the in-flight evaporation and impact of equally sized inkjet printed droplets that consist of a systematically varied polystyrene concentration in either toluene or butyl acetate is presented. At low polymer concentrations, a linear relationship that decreased was observed between dried droplet diameter and printing height. However, increased concentrations revealed an initial exponential decay in the dried droplet diameter, which stabilized at greater heights. At higher concentration and height, the polymer forms a skin on the surface of the inkjet printed droplet, which causes inhibition of the in-flight evaporation of the solvent. [source] Corrosion inhibition of carbon steel under two-phase flow (water-petroleum) simulated by turbulently agitated systemTHE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 2 2008Qasim J. M. Slaiman Abstract The corrosion of carbon steel in single-phase (water with 0.1N NaCl) and two immiscible phases (kerosene-water) using turbulently agitated system was investigated. The experiments were carried out for Reynolds number (Re) range of 38 000 to 95 000 using circular disc turbine agitator at 40°C. In two-phase system, test runs were carried out in aqueous phase (water) concentrations of 1% vol, 5% vol, 8% vol, and 16.4% vol mixed with kerosene at various Re. The effect of Re, percent of dispersed phase, dispersed droplet diameter, and number of droplets per unit volume on the corrosion rate were investigated and discussed. Test runs were carried out using two types of inhibitors: sodium nitrite of concentrations 20, 40, and 60 ppm and sodium hexapolyphosphate of concentrations 485, 970, and 1940 ppm in a solution containing 8% vol aqueous phase (water) mixed with kerosene (continuous phase) at 40°C for the whole range of Re. It was found that increasing Re increased the corrosion rate and the presence of water enhanced the corrosion rate by increasing the solution electrical conductivity. For two-phase solution containing 8% vol and 16% vol of water, the corrosion rate was higher than single phase (100% vol water). The main parameters that play the major role in determining the corrosion rate in two phases were concentration of oxygen, solution electrical conductivity, and the interfacial area between the two phases (dispersed and continuous). Sodium nitrite and sodium hexapolyphosphate were found to be efficient inhibitors in two-phase solution for the investigated range of Re. On a étudié la corrosion de l'acier au carbone dans des conditions monophasiques (eau avec 0,1N de NaCl) et diphasiques immiscibles (kérosène-eau) à l'aide d'un système agité turbulent. Les expériences ont été menées pour une gamme de nombre de Reynolds (Re) de 38000 à 95000, avec un agitateur de type Rushton à 40°C. Des tests pour le système diphasique ont été effectuées dans des concentrations de phase aqueuse (eau) de 1%, 5%, 8% et 16,4% en volume, mélangée à du kérosène pour différentes valeurs de Re. L'effet du nombre de Reynolds (Re), le pourcentage de la phase dispersée, le diamètre des gouttelettes dispersées et le nombre de gouttelettes par unité de volume sur le taux de corrosion a été étudié et analysé. Les essais ont été réalisés avec deux types d'inhibiteurs: du nitrite de sodium à des concentrations de 20, 40 et 60 ppm et de l'hexapolyphosphate de sodium à des concentrations de 485, 970 et 1940 ppm dans une solution contenant 8% en volume de phase aqueuse (eau) mélangée à du kérosène (phase aqueuse) à 40°C pour la gamme complète de Re. On a trouvé que l'augmentation du Re augmentait le taux de corrosion et que la présence d'eau améliorait le taux de corrosion en augmentant la conductivité électrique des solutions. Pour la solution diphasique contenant 8% et 16% en volume d'eau, le taux de corrosion est plus grand qu'en monophasique (100% en volume d'eau). Les principaux paramètres qui jouent un rôle majeur dans la détermination du taux de corrosion dans la solution diphasique sont la concentration d'oxygène, la conductivité électrique de la solution et l'aire interfaciale entre les deux phases (dispersée et continue). On a trouvé que le nitrite de sodium et l'hexapolyphosphate étaient des inhibiteurs efficaces dans la solution diphasique pour la gamme de Re étudié. [source] Small scale mixing processes at the top of a marine stratocumulus,a case studyTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 622 2007Krzysztof E. Haman Abstract A layer of intensive mixing (entrainment interface layer, [EIL]) at the top of marine stratocumulus under a strong inversion has been investigated with 10 cm resolution using an ultrafast thermometer (UFT-F; temperature), a particle volume monitor PVM,100A (liquid water content), and a fast forward scattering spectrometer probe (FFSSP; droplet spectra). Measurements were collected on board the NCAR C-130 aircraft during research flight RF05 of DYCOMS-II field study. The EIL consists of mutual filaments of cloudy and clear air at different stages of stirring, mixing, and homogenization. Borders between these filaments are often very sharp, with the 10 cm resolution of the instruments being insufficient to characterize them properly in many cases. Certain classifications of these filaments and hypotheses about the mechanisms of their formation have been proposed. The common occurrence of filaments of sizes smaller than the resolution of instruments has been indirectly confirmed. This is in agreement with the observed cloud droplet spectra showing variations of droplet number concentration without significant change of the mean droplet diameter and spectrum width. Copyright © 2007 Royal Meteorological Society [source] Droplet fusion by alternating current (AC) field electrocoalescence in microchannelsELECTROPHORESIS, Issue 19 2005Max Chabert Abstract We present a system for the electrocoalescence of microfluidic droplets immersed in an immiscible solvent, where the undeformed droplet diameters are comparable to the channel diameter. The electrodes are not in direct contact with the carrier liquid or the droplets, thereby minimizing the risk of cross-contamination between different coalescence events. Results are presented for the coalescence of buffered aqueous droplets in both quiescent and flowing fluorocarbon streams, and on-flight coalescence is demonstrated. The capillary-based system presented here is readily amenable to further miniaturization to any lab-on-a-chip application where the conductivity of the droplets is much greater than the conductivity of the stream containing them, and should aid in the further application of droplet microreactors to biological analyses. [source] Polymerisable Miniemulsions Using Rotor-Stator HomogenisersMACROMOLECULAR REACTION ENGINEERING, Issue 4 2008Ula El-Jaby Abstract The use of a rotor-stator mixer as a homogenisation device to make miniemulsion droplets with industrially pertinent solid contents was investigated. Methyl methacrylate/butyl acrylate (50:50 w/w ratio) miniemulsions with droplet diameters from 2 µm to 300 nm and polydispersity indices from 1.2 to 3.6 were used. Miniemulsions with three different mean droplet diameters (300, 400, 600 nm) were polymerised and the evolution of particle size was observed. When 300 nm droplets were polymerised they yielded particles of similar diameter to the original droplets, whereas particle coalescence of the growing particles with a loss of control over the particle size distribution was observed for the 400 and 600 nm droplets. The influence of costabiliser, agitation speed, solid content, colloidal protectors and surface coverage on the evolution of the droplet size and size distribution as well as on the evolution of the average particle size and its distribution were examined. It was observed that changing the above parameters had no impact on the evolution of the particle size, suggesting we have a very robust miniemulsion system. [source] |