Home About us Contact | |||
Drop Size Distributions (drop + size_distribution)
Selected AbstractsDrop Size Distribution in a Standard Twin-Impeller Batch Mixer at High Dispersed-Phase Volume FractionCHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 8 2009A. EL-Hamouz Abstract The preparation of concentrated aqueous silicone oil emulsions has been investigated with particular attention to the effect of the dispersed-phase volume fraction , from 0.01 to 0.5 for a wide range of oil viscosities (50 to 1000 cSt). Oil was added on the top surface of a 6-L vessel. Drop size distribution and Sauter mean diameter, d32, measurements were carried out over 24 h mixing time. Emulsification was found to be relatively sensitive to the oil phase viscosity, ,d, for the same , yielding a narrower drop size distribution for low oil viscosity (50 cSt) and a wider drop size distribution for the highly viscous oil (1000 cSt). For the same ,, increasing ,d resulted in increasing d32. The equilibrium d32 was found to be well correlated to the viscosity number by for , = 0.5. For the same oil viscosity, d32 was found to increase with increasing ,. A multiregression of d32 with both , and Vi for various silicone oil viscosity grades was successfully correlated by with a regression coefficient (R2) of 0.975. This shows a very weak dependence of the equilibrium d32 on ,. [source] Experiments, Modeling and Simulation of Drop Size Distributions in Stirred Liquid/ Liquid SystemsCHEMIE-INGENIEUR-TECHNIK (CIT), Issue 8 2005A. Gäbler No abstract is available for this article. [source] Drop Size Distribution in a Standard Twin-Impeller Batch Mixer at High Dispersed-Phase Volume FractionCHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 8 2009A. EL-Hamouz Abstract The preparation of concentrated aqueous silicone oil emulsions has been investigated with particular attention to the effect of the dispersed-phase volume fraction , from 0.01 to 0.5 for a wide range of oil viscosities (50 to 1000 cSt). Oil was added on the top surface of a 6-L vessel. Drop size distribution and Sauter mean diameter, d32, measurements were carried out over 24 h mixing time. Emulsification was found to be relatively sensitive to the oil phase viscosity, ,d, for the same , yielding a narrower drop size distribution for low oil viscosity (50 cSt) and a wider drop size distribution for the highly viscous oil (1000 cSt). For the same ,, increasing ,d resulted in increasing d32. The equilibrium d32 was found to be well correlated to the viscosity number by for , = 0.5. For the same oil viscosity, d32 was found to increase with increasing ,. A multiregression of d32 with both , and Vi for various silicone oil viscosity grades was successfully correlated by with a regression coefficient (R2) of 0.975. This shows a very weak dependence of the equilibrium d32 on ,. [source] A nonlinear atomization model for computation of drop size distributions and spray simulationsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 11 2005Hongbok Park Abstract A model has been developed to provide a comprehensive simulation of a spray formed by a high-speed liquid jet. The primary atomization process is simulated in a completely nonlinear fashion using the boundary element method under the assumption of axisymmetric, inviscid flow. The presence of the orifice boundary layer is simulated with a ring vortex whose strength and location are uniquely determined from boundary layer properties at the orifice exit plane. Droplet and axisymmetric ligament tracking models have been developed to provide more comprehensive spray simulations. The breakup of the axisymmetric ligaments shed from the parent surface is assessed both in a nonlinear fashion as well as using the linear stability analysis of Ponstein. Using this latter approach, drop size distributions have been generated from first principles and compared with the popular Rosin,Rammler model. Copyright © 2005 John Wiley & Sons, Ltd. [source] |