Home About us Contact | |||
Dry Weight Ratio (dry + weight_ratio)
Selected AbstractsDevelopment of an Improved Technique for the Perfusion of the Isolated Caudal Lobe of Sheep LiverEXPERIMENTAL PHYSIOLOGY, Issue 5 2000A. M. Ali The study was designed to develop an improved technique for perfusing the isolated caudal lobe of sheep liver. Twenty caudal lobes were perfused for 3-4 h, in a non-recirculating mode, with Krebs-Henseleit bicarbonate buffer. The perfusion system was designed to give a constant flow. The hepatic viability and functional normality of the perfused lobe were assessed by measuring the perfusion flow rate, pH, K+ efflux, O2 uptake, substrate uptake, gluconeogenesis from propionate and amino acids, and ureagenesis from ammonia and amino acids. Liver tissue was sampled for histological examination, as well as for the determination of liver glycogen and wet: dry weight ratio. The perfusion flow rate and pH were both stable throughout the perfusion. The potassium concentration in the effluent perfusate did not increase during the perfusion, suggesting that there was no loss of viability or hypoxia. The perfused lobe extracted more than 50% of the O2 supply. The rate of oxygen consumption was comparable to the rate reported in vivo. The initial glycogen content was reduced by about 40% after 4 h perfusion. The wet: dry weight ratio was 3.6, consistent with the absence of tissue oedema. Urea production was stimulated when NH4Cl (0.3 mM) was added to the medium but there was no significant increase in urea release when alanine (0.15 mM), glutamine (0.2 mM) or lysine (0.2 mM) was added. Urea production, however, increased by about 171% when a physiological mixture of amino acids was added. Propionate (0.5 mM), alanine and glutamine stimulated glucose production but not lysine or the complete amino acid mixture. Glutamine release was lower than that reported in the rat liver. Changing the direction of flow also revealed an apparent difference between livers from sheep and rats in their metabolism of ammonia. The improved technique offers a simple practical and inexpensive approach to many problems in ruminant physiology and nutritional biochemistry. [source] Nitric Oxide Ventilation of Rat Lungs from Non-Heart-Beating Donors Improves Posttransplant FunctionAMERICAN JOURNAL OF TRANSPLANTATION, Issue 12 2009B. M. Dong Lungs from non-heart-beating donors (NHBDs) would enhance the donor pool. Ex vivo perfusion and ventilation of NHBD lungs allows functional assessment and treatment. Ventilation of rat NHBD lungs with nitric oxide (NO) during ischemia, ex vivo perfusion and after transplant reduced ischemia-reperfusion injury (IRI) and improved lung function posttransplant. One hour after death, Sprague-Dawley rats were ventilated for another hour with either 60% O2 or 60% O2/40 ppm NO. Lungs were then flushed with 20-mL cold Perfadex, stored cold for 1 h, perfused in an ex vivo circuit with Steen solution and warmed to 37°C, ventilated 15 min, perfusion-cooled to 20°C, then flushed with cold Perfadex and stored cold. The left lung was transplanted and ventilated separately. Recipients were sacrificed after 1 h. NO-ventilation was associated with significantly reduced wet:dry weight ratio in the ex vivo circuit, better oxygenation, reduced pulmonary vascular resistance, increased lung tissue levels of cGMP, maintained endothelial NOS eNOS, and reduced increases in tumor necrosis factor alpha (TNF-,) and inducible nitric oxide synthase (iNOS). NO-ventilation had no effect on MAP kinases or NF-,B activation. NO administration to NHBDs before and after lung retrieval may improve function of lungs from NHBDs. [source] Inhibition of TXA2 synthesis with OKY-046 improves liver preservation by prolonged hypothermic machine perfusion in ratsJOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 7pt2 2008Hongzhi Xu Abstract Background and Aim:, We previously reported that hypothermic machine perfusion (HMP) for liver preservation is feasible, but hepatic microcirculatory dysfunction and significant liver damage remain major obstacles in its application when the preservation is extended to 24 h. The underlying injury mechanism is not well understood. The present study sought to investigate the role of thromboxane A2 (TXA2) in the pathogenesis of liver injury after prolonged HMP. Methods:, Livers isolated from Sprague,Dawley rats were subjected to continuous machine perfusion with University of Wisconsin (UW) solution at a flow rate of 0.4 mL/min/g liver at 4°C for 24 h. A specific TXA2 synthase inhibitor, OKY-046 (OKY), was added to UW solution during the preservation period and to the Krebs,Henseleit buffer during reperfusion. The performance of the livers after preservation was evaluated using an isolated liver perfusion system with Krebs,Henseleit buffer at a flow rate of 15 mL/min at 37°C for 30 min. Results:, Prolonged HMP induced a significant release of TXA2 into the portal circulation as indicated by markedly increased levels of TXB2 in the perfusate during reperfusion (at 30 min, 1447.4 ± 163.6 pg/mL vs 50.91 ± 6.7 pg/mL for control). Inhibition of TXA2 synthesis with OKY significantly decreased releases of TXA2 (69.8 ± 13.4 pg/mL) concomitant with reduced lactate dehydrogenase (LDH) releases (at 30 min, HMP + OKY: 144.9 ± 27.9 U/L; HMP: 369.3 ± 68.5 U/L; simple cold storage or SCS: 884.4 ± 80.3 U/L), decreased liver wet/dry weight ratio (HMP + OKY vs SCS and HMP: 3.6 ± 0.3 vs 4.4 ± 0.1 and 3.9 ± 0.2, respectively) and increased hyaluronic acid uptake (at 30 min, HMP + OKY vs SCS, HMP: 33.1 ± 2.9% vs 13.9 ± 3.6%, 18.6 ± 2.4%, respectively). Liver histology also showed significant improvement in tissue edema and hepatocellular necrosis with OKY compared with HMP without OKY. Conclusion:, The results demonstrate that TXA2 is involved in the development of hepatocellular injury induced by HMP, and inhibition of TXA2 synthesis during preservation and reperfusion protects liver hepatocytes and sinusoidal endothelial cells from injuries caused by prolonged HMP. [source] Baicalin attenuates air embolism-induced acute lung injury in rat isolated lungsBRITISH JOURNAL OF PHARMACOLOGY, Issue 2 2009Min-Hui Li Background and purpose:, Baicalin has been reported to have anti-inflammatory effects and protect against various tissue injuries. However, the effect of baicalin on air embolism-induced acute lung injury has not been tested yet. Experimental approach:, Acute lung injury was induced by infusion of air at a rate of 0.25 mL·min,1 for 1 min into the pulmonary artery of rat isolated lungs. At the end of the experiment, samples were collected for assessment of lung injury, biochemical analysis and histology. Different doses of baicalin (1, 2 and 4 mg·kg,1) were given into the perfusate before air infusion. Key results:, Air embolism elicited a significant increase in microvascular permeability (Kf), lung weight gain, wet/dry weight ratio, pulmonary artery pressure and protein concentration in the bronchoalveolar lavage fluid. Levels of the cytokines, tumour necrosis factor , and cytokine-induced neutrophil chemoattractant-1 in perfusate, and malondialdehyde levels and myeloperoxidase activities in lung tissue were also significantly increased. In addition, histological examination showed increased neutrophil infiltration in lung tissues. Furthermore, nuclear factor-,B activity and degradation of I,B-, were significantly increased in lungs. Pretreatment of the lungs with baicalin (4 mg·kg,1) showed a statistically significant difference in all of the assessed parameters, except for alteration in the pulmonary artery pressure. Conclusions and implications:, Our study suggests that baicalin attenuated air embolism-induced acute lung injury and may be considered a useful adjunct drug therapy in this clinical condition. [source] Comparison of various kinds of bone marrow stem cells for the repair of infarcted myocardium: Single clonally purified non-hematopoietic mesenchymal stem cells serve as a superior source,JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 4 2006Shaoheng Zhang Abstract A variety of adult stem cells have been used to transplant into the infarcted (MI) heart, however, comparative studies are lacking to show more suitable source of cells for transplantation. We have identified a single non-hematopoietic mesenchymal stem cell subpopulation (snMSCs) isolated from human bone marrow and clonally purified, that over 99% of them expressed MSC marker proteins and cardiomyocyte marker proteins when induction in vitro. We also compared the effects of the snMSCs with unpurified MSC (uMSCs), mononuclear cells (BMMNCs), or peripheral blood mononuclear cells (PBMNCs) on myocardial repair after induction of MI in rats. Ninety days later, we observed a better cardiac function assessed by ejection fraction, fraction of shortening and lung wet/dry weight ratios, less remodeling of left ventricle (LV), lower collagen density in the LV, and more vessels in the ischemic wall in the snMSCs transplantation group than in other cell-transplanted groups. Furthermore, the transplanted cells expressing cardiomyocyte specific proteins or vascular endothelial cell marker proteins were more in the snMSCs group than in other ones. We conclude that transplantation with single clonally purified MSCs seems to be more beneficial to the cardiac repair than with other stem cells after MI. J. Cell. Biochem. 99: 1132,1147, 2006. © 2006 Wiley-Liss, Inc. [source] |