Drug-like Compounds (drug-like + compound)

Distribution by Scientific Domains


Selected Abstracts


Lipid-Bilayer Permeation of Drug-Like Compounds

CHEMISTRY & BIODIVERSITY, Issue 11 2009
Stefanie
Abstract Lipid-bilayer permeation is determinant for the disposition of xenobiotics in the body. It controls the pharmacokinetic behavior of drugs and is, in many cases, a prerequisite for intracellular targeting. Permeation of in vivo barriers is in general predicted from lipophilicity and related parameters. This article goes beyond the empirical correlations, and elucidates the processes and their interplay determining bilayer permeation. A flip-flop model for bilayer permeation, which considers the partitioning rate constants beside the translocation rate constants, is compared with the diffusion model based on Fick's first law. According to the flip-flop model, the ratios of aqueous volumes to barrier area can determine whether partitioning or translocation is rate-limiting. The flip-flop model allows permeation of anions and cations, and expands our understanding of pH-dependent permeation kinetics. Some experimental evidences for ion-controlled permeation at pH,7 are also included in this work. [source]


Novel Inhibitors of Alkaline Phosphatase Suppress Vascular Smooth Muscle Cell Calcification,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2007
Sonoko Narisawa
Abstract We report three novel inhibitors of the physiological pyrophosphatase activity of alkaline phosphatase and show that these compounds are capable of reducing calcification in two models of vascular calcification (i.e., they suppress in vitro calcification by cultured Enpp1,/, VSMCs and they inhibit the increased pyrophosphatase activity in a rat aortic model). Introduction: Genetic ablation of tissue-nonspecific alkaline phosphatase (TNALP) leads to accumulation of the calcification inhibitor inorganic pyrophosphate (PPi). TNALP deficiency ameliorates the hypermineralization phenotype in Enpp1,/, and ank/ank mice, two models of osteoarthritis and soft tissue calcification. We surmised that the pharmacological inhibition of TNALP pyrophosphatase activity could be used to prevent/suppress vascular calcification. Materials and Methods: Comprehensive chemical libraries were screened to identify novel drug-like compounds that could inhibit TNALP pyrophosphatase function at physiological pH. We used these novel compounds to block calcification by cultured vascular smooth muscle cells (VSMCs) and to inhibit the upregulated pyrophosphatase activity in a rat aortic calcification model. Results: Using VSMC cultures, we determined that Enpp1,/, and ank/ank VSMCs express higher TNALP levels and enhanced in vitro calcification compared with wildtype cells. By high-throughput screening, three novel compounds, 5361418, 5923412, and 5804079, were identified that inhibit TNALP pyrophosphatase function through an uncompetitive mechanism, with high affinity and specificity when measured at both pH 9.8 and 7.5. These compounds were shown to reduce the calcification by Enpp1,/, VSMCs. Furthermore, using an ex vivo rat whole aorta PPi hydrolysis assay, we showed that pyrophosphatase activity was inhibited by all three lead compounds, with compound 5804079 being the most potent at pH 7.5. Conclusions: We conclude that TNALP is a druggable target for the treatment and/or prevention of ectopic calcification. The lead compounds identified in this study will serve as scaffolds for medicinal chemistry efforts to develop drugs for the treatment of soft tissue calcification. [source]


Accurate prediction of basicity in aqueous solution with COSMO-RS

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 1 2006
Frank Eckert
Abstract The COSMO-RS method, a combination of the quantum chemical dielectric continuum solvation model COSMO with a statistical thermodynamics treatment for realistic solvation simulations, has been used for the prediction of base pKa constants. For a variety of 43 organic bases the directly calculated values of the free energies of dissociation in water showed a very good correlation with experimental base pKa values (r2 = 0.98), corresponding to a standard deviation of 0.56 pKa units. Thus, we have an a priori prediction method for base pKa with the regression constant and the slope as only adjusted parameters. In accord with recent findings for pKa acidity predictions, the slope of pKa vs. ,Gdiss was significantly smaller than the theoretically expected value of 1/RTln(10). The predictivity of the presented method is general and not restricted to certain compound classes, but systematic corrections of 1 and 2 pKa units for secondary and tertiary aliphatic amines are required, respectively. The pKa prediction method was validated on a set of 58 complex multifunctional drug-like compounds, yielding an RMS accuracy of 0.66 pKa units. © 2005 Wiley Periodicals, Inc. J Comput Chem 27: 11,19, 2006 [source]


Ionization-specific prediction of blood,brain permeability

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 1 2009
Kiril Lanevskij
Abstract This study presents a mechanistic QSAR analysis of passive blood,brain barrier permeability of drugs and drug-like compounds in rats and mice. The experimental data represented in vivo log,PS (permeability-surface area product) from in situ perfusion, brain uptake index, and intravenous administration studies. A data set of 280 log,PS values was compiled. A subset of 178 compounds was assumed to be driven by passive transport that is free of plasma protein binding and carrier-mediated effects. This subset was described in terms of nonlinear lipophilicity and ionization dependences, that account for multiple kinetic and thermodynamic effects: (i) drug's kinetic diffusion, (ii) ion-specific partitioning between plasma and brain capillary endothelial cell membranes, and (iii) hydrophobic entrapment in phospholipid bilayer. The obtained QSAR model provides both good statistical significance (RMSE,<,0.5) and simple physicochemical interpretations (log,P and pKa), thus providing a clear route towards property-based design of new CNS drugs. © 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:122,134, 2009 [source]


Therapeutic potential of sulfamides as enzyme inhibitors

MEDICINAL RESEARCH REVIEWS, Issue 6 2006
Jean-Yves Winum
Abstract Sulfamide, a quite simple molecule incorporating the sulfonamide functionality, widely used by medicinal chemists for the design of a host of biologically active derivatives with pharmacological applications, may give rise to at least five types of derivatives, by substituting one to four hydrogen atoms present in it, which show specific biological activities. Recently, some of these compounds started to be exploited for the design of many types of therapeutic agents. Among the enzymes for which sulfamide-based inhibitors were designed, are the carbonic anhydrases (CAs), a large number of proteases belonging to the aspartic protease (HIV-1 protease, ,-secretase), serine protease (elastase, chymase, tryptase, and thrombin among others), and metalloprotease (carboxypeptidase A (CPA) and matrix metalloproteinases (MMP)) families. Some steroid sulfatase (STS) and protein tyrosine phosphatase inhibitors belonging to the sulfamide class of derivatives have also been reported. In all these compounds, many of which show low nanomolar affinity for the target enzymes for which they have been designed, the free or substituted sulfamide moiety plays important roles for the binding of the inhibitor to the active site cavity, either by directly coordinating to a metal ion found in some metalloenzymes (CAs, CPA, STS), usually by means of one of the nitrogen atoms present in the sulfamide motif, or as in the case of the cyclic sulfamides acting as HIV protease inhibitors, interacting with the catalytically critical aspartic acid residues of the active site by means of an oxygen atom belonging to the HNSO2NH motif, which substitutes a catalytically essential water molecule. In other cases, the sulfamide moiety is important for inducing desired physico-chemical properties to the drug-like compounds incorporating it, such as enhanced water solubility, better bioavailability, etc., because of the intrinsic properties of this highly polarized moiety when attached to an organic scaffold. This interesting motif is thus of great value for the design of pharmacological agents with a lot of applications. © 2006 Wiley Periodicals, Inc. Med Res Rev [source]


Selection criteria for drug-like compounds

MEDICINAL RESEARCH REVIEWS, Issue 3 2003
Ingo Muegge
Abstract The fast identification of quality lead compounds in the pharmaceutical industry through a combination of high throughput synthesis and screening has become more challenging in recent years. Although the number of available compounds for high throughput screening (HTS) has dramatically increased, large-scale random combinatorial libraries have contributed proportionally less to identify novel leads for drug discovery projects. Therefore, the concept of ,drug-likeness' of compound selections has become a focus in recent years. In parallel, the low success rate of converting lead compounds into drugs often due to unfavorable pharmacokinetic parameters has sparked a renewed interest in understanding more clearly what makes a compound drug-like. Various approaches have been devised to address the drug-likeness of molecules employing retrospective analyses of known drug collections as well as attempting to capture ,chemical wisdom' in algorithms. For example, simple property counting schemes, machine learning methods, regression models, and clustering methods have been employed to distinguish between drugs and non-drugs. Here we review computational techniques to address the drug-likeness of compound selections and offer an outlook for the further development of the field. © 2003 Wiley Periodicals, Inc. Med Res Rev, 23, No. 3, 302-321, 2003 [source]