Drug Sensitivity (drug + sensitivity)

Distribution by Scientific Domains
Distribution within Medical Sciences


Selected Abstracts


Modulation of tamoxifen sensitivity by antisense Bcl-2 and trastuzumab in breast carcinoma cells

CANCER, Issue 10 2005
Ph.D., Ryungsa Kim M.D.
Abstract BACKGROUND Because the overexpression of HER-2 and Bcl-2 is associated with resistance to tamoxifen (TAM), the authors examined the effect of antisense (AS) Bcl-2 on sensitivity to TAM compared with the effect of trastuzumab on sensitivity to TAM in breast carcinoma cell lines. METHODS Drug sensitivity was assessed in vitro using a [3-4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay with the breast carcinoma cell lines ZR-75-1, MDA-MB-453, and BT-474. AS Bcl-2 18-mer phosphorothioate oligonucleotide was applied. Apoptotic cell death was assessed with the terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick-end labeling method, and gene expression was evaluated with Western blot analysis. RESULTS The expression of Bcl-2 was identified in ZR-75-1 and BT-474 cells and, to a lesser extent, in MDA-MB-453 cells. Overexpression of HER-2 was identified in BT-474 cells, and moderate expression was identified in MDA-MB-453 and ZR-75-1 cells. Combination treatment with trastuzumab or AS Bcl-2 enhanced TAM sensitivity in ZR-75-1 cells, which showed 50% inhibitory concentration (IC50) values of 0.9 ,M (7.2-fold increase) and 0.5 ,M (13.0-fold), respectively. Combination treatment with trastuzumab or AS Bcl-2 slightly enhanced TAM sensitivity of BT-474 cells, with IC50 values of 3.0 ,M (1.3-fold) and 1.5 ,M (2.6-fold), respectively. The sensitivity of MDA-MB-453 cells to TAM was not enhanced by combination with trastuzumab or AS Bcl-2. Modulation of TAM sensitivity by AS Bcl-2 was superior to modulation by trastuzumab in HER-2-expressing and Bcl-2 -expressing breast carcinoma cells. Enhanced sensitivity in combination with AS Bcl-2 was associated with down-regulation of Bcl-2 and pAkt, which was correlated with the induction of Bax and caspase-3, leading to apoptosis. CONCLUSIONS AS Bcl-2 appeared to be superior to trastuzumab with respect to regulating the signal-transduction pathways involved in breast carcinoma cells. Cancer 2005. © 2005 American Cancer Society. [source]


Preclinical evaluation of antisense bcl -2 as a chemosensitizer for patients with gastric carcinoma

CANCER, Issue 10 2004
Ph.D., Ryungsa Kim M.D.
Abstract BACKGROUND Because bcl -2 is a critical factor for anticancer drug-induced apoptosis, the authors conducted a preclinical evaluation of antisense (AS) bcl -2 as an enhancer of the chemotherapeutic effect in the treatment of patietns with gastric carcinoma. METHODS AS bcl -2 was used with 18-mer phosphorothiated oligonucleotides in the MKN-45 gastric carcinoma cell line. Drug sensitivity in vitro was evaluated using the methyl-thiazoldiphenyl tetrazolium assay, and antitumor effects in vivo were evaluated using the nude mouse xenograft. Apoptosis was determined with the terminal deoxyuridine triphosphate nick-end labeling assay. AS bcl -2 in vitro was treated with lipofectin, whereas it was administered intraperitoneally for 6 consecutive days twice every 2 weeks in vivo. Anticancer drugs were administered intraperitoneally four times per week. RESULTS bcl -2 was down-regulated to 60% of its initial value after treatment with 1.0 ,M AS bcl -2 compared with the controls of random and mismatched oligonucleotides. Drug sensitivity to doxorubicin, cisplatin, and paclitaxel (TXL) was increased 3,4-fold when used in combination with AS bcl -2, which was determined with 50% inhibitory concentration values, compared with the control group. Increased drug sensitivity was associated with apoptosis, which increased in Bax and poly-adenosine diphosphate (ADP-ribose) polymerase and decreased in phosphorylated Akt (pAkt). The antitumor effect of cisplatin and TXL in vivo was enhanced significantly in combination with AS bcl -2. Down-regulation of bcl -2 was observed on Day 4 after the treatment with AS bcl -2. CONCLUSIONS Combination treatment with AS bcl -2 and anticancer drugs, including cisplatin and TXL, may be a new strategy for enhancing chemotherapeutic effects in the treatment of gastric carcinoma. Cancer 2004. © 2004 American Cancer Society. [source]


GM3 synthase gene is a novel biomarker for histological classification and drug sensitivity against epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer

CANCER SCIENCE, Issue 10 2007
Mariko Noguchi
Expression of gangliosides and alterations in their composition have been observed during cell proliferation and differentiation and in certain cell cycle phases, brain development and cancer malignancy. To investigate the characteristics of GM3 synthase, SAT-I mRNA and ganglioside GM3 expression levels in lung cancer, we examined the expression levels of SAT-I mRNA as well as GM3 in 40 tumor tissues surgically removed from non-small cell lung cancer patients. Adenocarcinoma tissues expressed SAT-I mRNA levels that were significantly higher than those of squamous and other carcinomas (P < 0.0001). Moreover, the SAT-I mRNA levels were high in the bronchioalveolar carcinoma subtype and low in the solid and mucin subtypes of adenocarcinomas (P = 0.049, 0.049 and 0.013, respectively). To clarify the relationship between SAT-I mRNA and epidermal growth factor receptor (EGFR)-tyrosine kinase (TK) inhibitor sensitivity, we carried out drug sensitivity tests for the EGFR-TK inhibitors gefitinib and AG1478 using eight adenocarcinoma cell lines expressing no EGFR mutations. The IC50 values for gefitinib and AG1478 decreased dramatically with increasing SAT-I mRNA levels (R2 = 0.81 and 0.59, respectively), representing a wide range of drug sensitivities among adenocarcinoma cell lines. To explore a possible mechanism of how GM3 could enhance the sensitivity to EGFR-TK inhibitors, the SAT-I gene was introduced stably into a GM3-negative clone of murine 3LL lung cancer cells to produce GM3-reconstituted clones. We found an increase in EGFR protein levels and gefitinib sensitivity in GM3-reconstituted cells, suggesting the involvement of GM3 in the turnover of EGFR protein. Therefore, it is highly expected that, by measuring the expression levels of SAT-I mRNA in lung biopsy samples from non-small cell lung cancer patients, enhanced pathological identification and individualized chemotherapeutic strategies can be established for the appropriate use of EGFR-TK inhibitors. (Cancer Sci 2007; 98: 1625,1632) [source]


Tetrazepam drug sensitivity , usefulness of the patch test

CONTACT DERMATITIS, Issue 3 2002
C. Pirker
The muscle relaxant tetrazepam may cause severe cutaneous adverse effects. We report 4 cases of varying intensity: Stevens,Johnson syndrome, erythema,multiforme-like exanthema, maculopapular and maculo-urticarial exanthema. Patch testing with tetrazepam (10% in petrolatum) was strongly positive in the 2 patients with severe skin eruptions and weakly positive in the other 2. Oral rechallenge with tetrazepam was positive in 3 patients (1 not done). Diazepam, with a similar chemical structure to tetrazepam, was negative on patch testing and on oral challenge testing in 2 patients. Although the optimal patch test concentration of tetrazepam has still to be determined, it is a useful diagnostic tool to confirm sensitization, particularly in patients with severe bullous eruptions. [source]


Changes in antioxidant defense status in response to cisplatin and 5-FU in esophageal carcinoma

DISEASES OF THE ESOPHAGUS, Issue 2 2008
T. Kaur
SUMMARY., The ability of reactive oxygen species to induce cellular damage and to cause cell death opens the possibility of exploiting this property in the treatment of esophageal cancer through a free radical mediated mechanism. The present study was carried out with the aim of evaluating the changes in the antioxidant defense status in esophageal cancer patients treated without and with neoadjuvant therapy (NAT). Forty surgically resected tissue specimens from tumors, tissue adjoining the tumors and paired macroscopically normal mucosa were obtained from esophageal cancer patients treated with or without chemo-radiotherapy. An evaluation of antioxidant defense system in the normal, adjoining and tumor esophageal tissues in response to NAT revealed decreased catalase activity in tumor and adjoining tissues as compared to their respective normal tissue levels. Similarly, decreased superoxide dismutase activity was observed in tumor tissue in response to NAT. In both the treatment groups (with and without NAT), no significant change was observed in the enzyme activity of glutathione reductase in the normal, adjoining and tumor tissues. Enhanced glutathione peroxidase activity was found in tumor tissue, as compared to the adjoining and paired normal tissue of patients after NAT. Estimation of reduced glutathione (GSH) levels showed a significant decline in GSH levels in esophageal tumors after NAT. Depletion of GSH, an endogenous antioxidant, would elevate drug sensitivity and might predispose neoplastic cells to apoptosis in response to NAT. The antioxidant enzymes in the esophageal carcinoma thus may play an important role in influencing the final outcome upon NAT course. [source]


An update on cyathostomins: Anthelmintic resistance and worm control

EQUINE VETERINARY EDUCATION, Issue 10 2008
J. B. Matthews
Summary Intestinal nematodes are an important cause of equine disease. Of these parasites, the Cyathostominae are the most important group, both in terms of their prevalence and their pathogenicity. Cyathostomin infections are complex and control is further complicated by ever-increasing levels of resistance to some of the commonly used anthelmintics. There are no new equine anthelmintics under development, so it is imperative that the efficacy of any currently-effective drug classes be maintained for as long as possible. It is believed that the proportion of refugia (i.e. the percentage of parasites not exposed to a drug at each treatment) is one of the most crucial factors in determining the rate at which anthelmintic resistance develops. It is important, therefore, that levels of refugia be taken into account when designing nematode control programmes for horses. This can be assisted by knowledge of the local epidemiology of the infection, supplemented by faecal egg count analysis to identify those animals that are making the major contribution to pasture contamination. This type of rational nematode control requires equine veterinary surgeons to get involved in designing and implementing deworming programmes. The advice given must be based on a combination of knowledge of cyathostomin biology and epidemiology as well as an awareness of the parasite population's current drug sensitivity and a sound history of husbandry at the establishment. As anthelmintic resistance will be the major constraint on the future control of cyathostomins, researchers are now actively investigating this area. Studies are underway to develop tests that will enable earlier detection of anthelmintic resistance and an assay that will help identify those horses that require anthelmintic treatments targeted at intestinal wall larvae. [source]


Effect of the G1896A precore mutation on drug sensitivity and replication yield of lamivudine-resistant HBV in vitro

HEPATOLOGY, Issue 1 2003
Robert Y. M. Chen
Hepatitis B e antigen (HBeAg) negative chronic hepatitis B (CHB) is frequently caused by a mutation (G1896A) in the hepatitis B virus (HBV) precore (PC) reading frame that creates a stop codon, causing premature termination of the PC protein. During lamivudine treatment, drug resistance develops at a similar rate in HBeAg positive and HBeAg negative CHB. Lamivudine-resistant HBV mutants have been shown to replicate inefficiently in vitro in the absence of PC mutations, but it is unknown whether the presence of PC mutations affects replication efficiency or antiviral sensitivity. This study utilized the recombinant HBV baculovirus system to address these issues. HBV baculoviruses encoding the G1896A PC stop codon mutation were generated in wild-type (WT) and lamivudine-resistant (rtM204I and rtL180M + rtM204V) backgrounds, resulting in a panel of 6 related recombinant baculoviruses. In vitro assays were performed to compare the sensitivities of the PC mutant viruses with lamivudine and adefovir and to compare relative replication yields. The PC mutation did not significantly affect sensitivities to either adefovir or lamivudine. WT HBV and PC mutant HBV showed similar replication yields, whereas the replication yields of the lamivudine-resistant mutants were greatly reduced in HBeAg positive HBVs, confirming previous observations. However, the presence of the PC mutation was found to compensate for the replication deficiency in each of the lamivudine-resistant mutants, increasing the replication yields of each virus. In conclusion, the PC stop codon mutation appears to increase the replication efficacy of lamivudine-resistant virus but does not affect in vitro drug sensitivity. [source]


Cyclooxygenase-2 inhibitor celecoxib augments chemotherapeutic drug-induced apoptosis by enhancing activation of caspase-3 and -9 in prostate cancer cells

INTERNATIONAL JOURNAL OF CANCER, Issue 3 2005
Devendra S. Dandekar
Abstract Many tumors constitutively express high levels of the inducible form of proinflammatory enzyme, cyclooxygenase-2 (COX-2). Increased COX-2 expression is associated with tumor cell resistance to many cytotoxic chemotherapy drugs. Furthermore, increased resistance to cytotoxic antitumor drugs is also known to be dependent on associated stromal cells in many tumors. We investigated whether prostate tumor-associated stromal cells, marrow-derived osteoblasts, affect cytotoxicity of 2 antitumor drugs, COL-3 and docetaxel (TXTR), and whether it is dependent on COX-2 activity. We further examined whether inhibiting the activity of COX-2 negate the stroma-induced decrease in drug sensitivity in tumor cells. COX-2-specific inhibitor celecoxib (CXB) was used to inhibit COX-2 activity and associated alteration in cell death signaling was investigated. Coculturing PC-3ML cells with osteoblasts decreased the cytotoxicity of the tested antitumor drugs and was associated with increased COX-2 activity in PC-3ML cells. A significant decrease in drug-induced PGE2 increase and an increase in cytotoxicity were observed when cells were treated with COL-3 or TXTR combined with CXB. Cytotoxicity of single or combination treatment increased apoptosis, which was associated with caspase-3 and -9 activation, PARP cleavage, increased BAD protein, but decreased protein levels of XIAP and BCL- xL. Oral administration of CXB (40 mg/kg) to mice with PC-3ML tumors for 42 days increased tumor latency, decreased tumor growth and enhanced tumor control with COL-3 or TXTR. Overall, a synergistic enhancement of antitumor activity in combination treatment was observed in vitro and an additive effect in vivo. These observations suggest a potential clinical use of combined dosing of COX-2 inhibitors and cytotoxic drugs at lower, nontoxic dose than currently used to treat advanced prostate cancer. © 2005 Wiley-Liss, Inc. [source]


One-year treatment of chronic urticaria with mizolastine: efficacy and safety

JOURNAL OF THE EUROPEAN ACADEMY OF DERMATOLOGY & VENEREOLOGY, Issue 2 2000
G Lorette
Abstract Aim,To assess the long-term safety and efficacy of the H1-receptor antagonist mizolastine in the symptomatic treatment of chronic urticaria (CU). Background,Mizolastine is a novel second generation antihistamine with additional anti-inflammatory properties which has been shown to be effective in this condition as well as in allergic rhinitis. As the drug is used for chronic treatment, a detailed study of its efficacy and safety over a prolonged period was warranted. Methods,This open label multicentre trial recruited 211 patients suffering from CU (67% female; mean age 40 ± 13 years), with , 1 episode/week if untreated. After a 7-day placebo run-in period, patients received mizolastine (10 or 15 mg) for 12 months. Efficacy was assessed by the patient using daily diary cards and overall condition evaluation at study visits. Clinicians also assessed the same parameters at each visit, and gave a global assessment at study termination. Safety was assessed by monitoring adverse events and laboratory parameters. Cardiac safety was monitored every 4 months using 12-lead ECGs, with particular attention to QT intervals. Results,The trial was completed by 127 patients. Mizolastine reduced overall discomfort from the second week of therapy, and reduced itching and the number and size of wheals, as assessed by the patients. The clinician's assessment of the proportion of patients with > 10 wheals decreased from 42% to 28% after 2 months. Clinical assessment also indicated that itch intensity and angioedema were improved by mizolastine, and the improvement was sustained throughout the trial. The investigators estimated that 70% of patients benefited from therapy. There were no drug-related serious adverse events during the study. The cardiac repolarization assessed according to the QTc intervals was not modified during prolonged administration. Conclusion,Mizolastine improves CU symptoms, and these improvements are sustained over 12 months with no loss of drug sensitivity. No specific side-effects are associated with its long-term use in the current study. [source]


Development of a PCR-based diagnostic test detecting a nt230(del4) MDR1 mutation in dogs: verification in a moxidectin-sensitive Australian Shepherd

JOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 1 2005
J. GEYER
A subpopulation of dogs of the Collie and Australian Shepherd breeds show increased sensitivity to central nervous actions of ivermectin, doramectin, loperamide, and probably several other drugs. The molecular background for this greater sensitivity is a nonsense mutation in the MDR1 efflux pump, which is part of the functional blood,brain barrier and normally limits drug penetration into the brain. This report describes a rapid PCR-based method for detection of this nt230(del4) MDR1 mutation using a small amount of genomic DNA from blood cells. Thereby, homozygous intact, homozygous mutated, and heterozygous mutated MDR1 genotypes can be clearly differentiated by high resolution polyacrylamide gel electrophoresis. Using this diagnostic test two Collies and one Australian Shepherd were screened for the nt230(del4) MDR1 mutation. The Collies had no history of altered drug sensitivity and showed homozygous intact and heterozygous mutated MDR1 alleles, respectively. However, the Australian Shepherd developed clear signs of neurotoxicity including ataxia, crawling, acoustic and tactile hyperexcitability, and miosis after a single dose of moxidectin (400 ,g/kg). For this dog two mutated MDR1 alleles were detected. This report describes for the first time moxidectin neurotoxicosis in a dog with a homozygous MDR1 mutation. [source]


Preclinical evaluation of antisense bcl -2 as a chemosensitizer for patients with gastric carcinoma

CANCER, Issue 10 2004
Ph.D., Ryungsa Kim M.D.
Abstract BACKGROUND Because bcl -2 is a critical factor for anticancer drug-induced apoptosis, the authors conducted a preclinical evaluation of antisense (AS) bcl -2 as an enhancer of the chemotherapeutic effect in the treatment of patietns with gastric carcinoma. METHODS AS bcl -2 was used with 18-mer phosphorothiated oligonucleotides in the MKN-45 gastric carcinoma cell line. Drug sensitivity in vitro was evaluated using the methyl-thiazoldiphenyl tetrazolium assay, and antitumor effects in vivo were evaluated using the nude mouse xenograft. Apoptosis was determined with the terminal deoxyuridine triphosphate nick-end labeling assay. AS bcl -2 in vitro was treated with lipofectin, whereas it was administered intraperitoneally for 6 consecutive days twice every 2 weeks in vivo. Anticancer drugs were administered intraperitoneally four times per week. RESULTS bcl -2 was down-regulated to 60% of its initial value after treatment with 1.0 ,M AS bcl -2 compared with the controls of random and mismatched oligonucleotides. Drug sensitivity to doxorubicin, cisplatin, and paclitaxel (TXL) was increased 3,4-fold when used in combination with AS bcl -2, which was determined with 50% inhibitory concentration values, compared with the control group. Increased drug sensitivity was associated with apoptosis, which increased in Bax and poly-adenosine diphosphate (ADP-ribose) polymerase and decreased in phosphorylated Akt (pAkt). The antitumor effect of cisplatin and TXL in vivo was enhanced significantly in combination with AS bcl -2. Down-regulation of bcl -2 was observed on Day 4 after the treatment with AS bcl -2. CONCLUSIONS Combination treatment with AS bcl -2 and anticancer drugs, including cisplatin and TXL, may be a new strategy for enhancing chemotherapeutic effects in the treatment of gastric carcinoma. Cancer 2004. © 2004 American Cancer Society. [source]


Establishment of six new human biliary tract carcinoma cell lines and identification of MAGEH1 as a candidate biomarker for predicting the efficacy of gemcitabine treatment

CANCER SCIENCE, Issue 4 2010
Hidenori Ojima
The aim of this study was to establish new biliary tract carcinoma (BTC) cell lines and identify predictive biomarkers for the potential effectiveness of gemcitabine therapy. Surgical specimens of BTC were transplanted directly into immunodeficient mice to establish xenografts, then subjected to in vitro cell culture. The gemcitabine sensitivity of each cell line was determined and compared with the genome-wide gene expression profile. A new predictive biomarker candidate was validated using an additional cohort of gemcitabine-treated BTC cases. From 55 BTC cases, we established 19 xenografts and six new cell lines. Based on their gemcitabine sensitivity, 10 BTC cell lines (including six new and four publicly available ones) were clearly categorized into two groups, and MAGEH1 mRNA expression in the tumor cells showed a significant negative correlation with their sensitivity to gemcitabine. Immunohistochemically, MAGEH1 protein was detected in three (50%) out of six sensitive cell lines, and four (100%) out of four resistant cell lines. In the validation cohort of gemcitabine-treated recurrence cases, patients were categorized into "effective" and "non-effective" groups according to the RECIST guidelines for assessment of chemotherapeutic effects. MAGEH1 protein expression was detected in two (40%) out of five "effective" cases and all four (100%) "non-effective" cases. We have established a new BTC bioresource that covers a wide range of biological features, including drug sensitivity, and is linked with clinical information. Negative expression of MAGEH1 protein serves as a potential predictive marker for the effectiveness of gemcitabine therapy in BTC. (Cancer Sci 2010; 101: 882,888) [source]


GM3 synthase gene is a novel biomarker for histological classification and drug sensitivity against epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer

CANCER SCIENCE, Issue 10 2007
Mariko Noguchi
Expression of gangliosides and alterations in their composition have been observed during cell proliferation and differentiation and in certain cell cycle phases, brain development and cancer malignancy. To investigate the characteristics of GM3 synthase, SAT-I mRNA and ganglioside GM3 expression levels in lung cancer, we examined the expression levels of SAT-I mRNA as well as GM3 in 40 tumor tissues surgically removed from non-small cell lung cancer patients. Adenocarcinoma tissues expressed SAT-I mRNA levels that were significantly higher than those of squamous and other carcinomas (P < 0.0001). Moreover, the SAT-I mRNA levels were high in the bronchioalveolar carcinoma subtype and low in the solid and mucin subtypes of adenocarcinomas (P = 0.049, 0.049 and 0.013, respectively). To clarify the relationship between SAT-I mRNA and epidermal growth factor receptor (EGFR)-tyrosine kinase (TK) inhibitor sensitivity, we carried out drug sensitivity tests for the EGFR-TK inhibitors gefitinib and AG1478 using eight adenocarcinoma cell lines expressing no EGFR mutations. The IC50 values for gefitinib and AG1478 decreased dramatically with increasing SAT-I mRNA levels (R2 = 0.81 and 0.59, respectively), representing a wide range of drug sensitivities among adenocarcinoma cell lines. To explore a possible mechanism of how GM3 could enhance the sensitivity to EGFR-TK inhibitors, the SAT-I gene was introduced stably into a GM3-negative clone of murine 3LL lung cancer cells to produce GM3-reconstituted clones. We found an increase in EGFR protein levels and gefitinib sensitivity in GM3-reconstituted cells, suggesting the involvement of GM3 in the turnover of EGFR protein. Therefore, it is highly expected that, by measuring the expression levels of SAT-I mRNA in lung biopsy samples from non-small cell lung cancer patients, enhanced pathological identification and individualized chemotherapeutic strategies can be established for the appropriate use of EGFR-TK inhibitors. (Cancer Sci 2007; 98: 1625,1632) [source]