Home About us Contact | |||
Drug Encapsulation (drug + encapsulation)
Selected AbstractsDrug encapsulation using supercritical fluid extraction of emulsionsJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 3 2006P. Chattopadhyay Abstract The current work was aimed at evaluating a new method, supercritical fluid extraction of emulsions (SFEE), for the production of composite (e.g., polymer-drug) micro- and nanoparticles, intended for application in sustained-release drug delivery formulations. Using the proposed method, composite particles were obtained, both in a continuous or batch manner by supercritical carbon dioxide extraction of oil-in-water (o/w) emulsions. Model drugs indomethacin and ketoprofen and biodegradable polymers poly(lactic/glycolic) acid and Eudragit RS were used in order to demonstrate the effectiveness of the SFEE process for producing these particles. Stable aqueous suspensions of composite micro and nanoparticles, having sizes ranging between 0.1 and 2 µm were consistently obtained. Emulsion droplet diameter was found to be the major size control parameter. Other parameters investigated included polymer and drug concentrations in solvent and emulsion solvent fraction. The residual solvent content in the particle suspension obtained was consistently below 50 ppm. Standard dissolution tests were used to observe the sustained release phenomenon of the composite particles. The dissolution profile was characterized in terms of the intrinsic dissolution kinetic coefficients taking into account the specific surface area and solubility of the particles. It was observed that the kinetic coefficient parameter for encapsulated drugs was reduced by 2,4 orders of magnitude when compared to the unprocessed drug particles. © 2006 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 95:667,679, 2006 [source] Comparison of ciprofloxacin hydrochloride-loaded protein, lipid, and chitosan nanoparticles for drug deliveryJOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 1 2008Dharmendra Jain Abstract The aim of the present study was to develop single dose delivery systems based on nanotechnology for prolonged antibiotic release in a controlled manner. Five different drug,carrier ratios of ciprofloxacin hydrochloride-loaded nanoparticles of albumin, gelatin, chitosan (CS), and lipid [solid lipid nanoparticles (SLNs)] were prepared and characterized. Average particle size was found to be in the range of 73 ± 2 to 98 ± 44 nm for SLNs, 140 ± 7 to 175 ± 24 nm for albumin nanoparticles, 143 ± 18 to 184 ± 27 nm for gelatin nanoparticles, and 247 ± 48 to 322 ± 52 nm for CS nanoparticles. A drug-to-carrier ratio of 0.5:1 was preferred for CS nanoparticles having zeta potential of >20 mV and drug encapsulation of 35.01% ± 2.66%. Similarly, 0.6:1 ratio was preferred for albumin nanoparticles with zeta potential >16 mV and drug encapsulation 48.20% ± 3.01%. Zeta potentials of gelatin nanoparticles loaded with ciprofloxacin suggested that they were unstable and prone to flocculation. SLN with 0.25:1 drug carrier ratio showed 38.71% ± 2.38% drug entrapment and ,28 ± 1 mV surface charge. All the nanoparticles showed sustained drug release avoiding "burst effect" of the free drugs for up to 120 h for albumin nanoparticles, 96 h for CS and gelatin nanoparticles, and 80 h for SLNs. The drug release profiles followed Higuchi model. Results suggest that CS nanoparticles and SLNs can act as promising carriers for sustained ciprofloxacin release in infective conditions. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2008 [source] Hydrophobic ion pairing of isoniazid using a prodrug approachJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 6 2002Huiyu Zhou Abstract Inhalation therapy for infectious lung diseases, such as tuberculosis, is currently being explored, with microspheres being used to target alveolar macrophages. One method of drug encapsulation into polymeric microspheres to form hydrophobic ion-paired (HIP) complexes, and then coprecipitate the complex and polymer using supercritical fluid methodology. For the potent antituberculosis drug, isoniazid (isonicotinic acid hydrazide, INH), to be used in this fashion, it was modified into an ionizable form suitable for HIP. The charged prodrug, sodium isoniazid methanesulfonate (Na,INHMS), was then ion paired with hydrophobic cations, such as alkyltrimethylammonium or tetraalkylammonium. The logarithms of the apparent partition coefficients (log P,) of various HIP complexes of INHMS display a roughly linear relationship with the numbers of carbon atoms in the organic counterions. The water solubility of the tetraheptylammonium,INHMS complex is about 220-fold lower than that of Na,INHMS, while the solubility in dichloromethane exceeds 10 mg/mL, which is sufficient for microencapsulation of the drug into poly(lactide) microspheres. The actual logarithm of the dichloromethane/water partition coefficient (log P) for tetraheptylammonium,INHMS is 1.55, compared to a value of ,,1.8 for the sodium salt of INHMS. The dissolution kinetics of the tetraheptylammonium,INHMS complex in 0.9% aqueous solutions of NaCl was also investigated. Dissolution of tetraheptylammonium,INHMS exhibited a first-order time constant of about 0.28 min,1, followed by a slower reverse ion exchange process to form Na,INHMS. The half-life of this HIP complex is on the order of 30 min, making the enhanced transport of the drug across biological barriers possible. This work represents the first use of a prodrug approach to introduce functionality that would allow HIP complex formation for a neutral molecule. © 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91:1502,1511, 2002 [source] The Influence of Pendant Hydroxyl Groups on Enzymatic Degradation and Drug Delivery of Amphiphilic Poly[glycidol- block -(, -caprolactone)] CopolymersMACROMOLECULAR BIOSCIENCE, Issue 11 2009Jing Mao Abstract An amphiphilic diblock copolymer PG- b -PCL with well-controlled structure and pendant hydroxyl groups along hydrophilic block was synthesized by sequential anionic ring-opening polymerization. The micellization and drug release of PG- b -PCL copolymers using pyrene as a fluorescence probe were investigated for determining the influences of copolymer composition and lipase concentration on drug loading capacity and controlled release behavior. The biodegradation of PG- b -PCL copolymers was studied with microspheres as research samples. It has been concluded that the polar hydroxyl groups along each repeat unit of hydrophilic PG block in PG- b -PCL copolymer have great influences on drug encapsulation, drug release, and enzymatic degradation of micelles and microspheres. [source] Microgel-Based Engineered Nanostructures and Their Applicability with Template-Directed Layer-by-Layer Polyelectrolyte Assembly in Protein EncapsulationMACROMOLECULAR BIOSCIENCE, Issue 5 2005Dinesh B. Shenoy Abstract Summary: A novel strategy for the fabrication of microcapsules is elaborated by employing biomacromolecules and a dissolvable template. Calcium carbonate (CaCO3) microparticles were used as sacrificial templates for the two-step deposition of polyelectrolyte coatings by surface controlled precipitation (SCP) followed by the layer-by-layer (LbL) adsorption technique to form capsule shells. When sodium alginate was used for inner shell assembly, template decomposition with an acid resulted in simultaneous formation of microgel-like structures due to calcium ion-induced gelation. An extraction of the calcium after further LbL treatment resulted in microcapsules filled with the biopolymer. The hollow as well as the polymer-filled polyelectrolyte capsules were characterized using confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), and scanning force microscopy (SFM). The results demonstrated multiple functionalities of the CaCO3 core , as supporting template, porous core for increased polymer accommodation/immobilization, and as a source of shell-hardening material. The LbL treatment of the core-inner shell assembly resulted in further surface stabilization of the capsule wall and supplementation of a nanostructured diffusion barrier for encapsulated material. The polymer forming the inner shell governs the chemistry of the capsule interior and could be engineered to obtain a matrix for protein/drug encapsulation or immobilization. The outer shell could be used to precisely tune the properties of the capsule wall and exterior. Confocal laser scanning microscopy (CLSM) image of microcapsules (insert is after treating with rhodamine 6G to stain the capsule wall). [source] |