Home About us Contact | |||
Drug Development. (drug + development)
Selected AbstractsIn vitro assessment of cytochrome P450 inhibition: Strategies for increasing LC/MS-based assay throughput using a one-point IC50 method and multiplexing high-performance liquid chromatographyJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 9 2007Tong Lin Abstract A fast and robust LC/MS-based cytochrome P450 (CYP) inhibition assay, using human liver microsomes, has been fully developed and validated for the major human liver CYPs. Probe substrates were phenacetin, diclofenac, S-mephenytoin, and dextromethorphan for CYP1A2, CYP2C9, CYP2C19, and CYP2D6, respectively. Midazolam and testosterone were chosen for CYP3A4. Furafylline, sulfaphenazole, tranylcypromine, quinidine, and ketoconazole were identified as positive control inhibitors for CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, respectively. To increase the throughput of the assay, a one-point method was developed, using data from CYP inhibition assays conducted at one concentration (i.e., 10 µM), to estimate the drug concentration at which the metabolism of the CYP probe substrate was reduced by 50% (IC50). The IC50 values from the one-point assay were validated by correlating the results with IC50 values that were obtained with a traditional eight-point concentration,response curve. Good correlation was achieved with the slopes of the trendlines between 0.95 and 1.02 and with R2 between 0.77 and 1.0. Throughput was increased twofold by using a Cohesive multiplexing high-performance liquid chromatography system. The one-point IC50 estimate is useful for initial compound screening, while the full concentration,response IC50 method provides detailed CYP inhibition data for later stages of drug development. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 96: 2485,2493, 2007 [source] Application of ALOGPS to predict 1-octanol/water distribution coefficients, logP, and logD, of AstraZeneca in-house databaseJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 12 2004Igor V. Tetko Abstract The ALOGPS 2.1 was developed to predict 1-octanol/water partition coefficients, logP, and aqueous solubility of neutral compounds. An exclusive feature of this program is its ability to incorporate new user-provided data by means of self-learning properties of Associative Neural Networks. Using this feature, it calculated a similar performance, RMSE,=,0.7 and mean average error 0.5, for 2569 neutral logP, and 8122 pH-dependent logD7.4, distribution coefficients from the AstraZeneca "in-house" database. The high performance of the program for the logD7.4 prediction looks surprising, because this property also depends on ionization constants pKa. Therefore, logD7.4 is considered to be more difficult to predict than its neutral analog. We explain and illustrate this result and, moreover, discuss a possible application of the approach to calculate other pharmacokinetic and biological activities of chemicals important for drug development. © 2004 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 93:3103,3110, 2004 [source] High-throughput determination of the free fraction of drugs strongly bound to plasma proteinsJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 4 2004Joachim Schuhmacher Abstract Quantification of protein binding of new chemical entities is an important early screening step during drug discovery and is of fundamental interest for the estimation of safety margins during drug development. In this publication, we describe the development of a new high-throughput assay for the determination of the free drug fraction in plasma (fu). The new technique is an enhancement of the previously published erythrocytes partition method. It is based on the distribution of drugs between plasma water, plasma proteins, and solid-supported lipid membranes (Transil®). The execution of protein binding studies by partitioning is dramatically simplified by substituting erythrocytes with commercially available Transil® beads, and makes the method particularly suitable for high-throughput studies. Eight Bayer compounds from different compound classes covering a wide range of lipophilicities (log P,=,1.9,5.6) and fu values (0.018,35%) were selected for validation of the assay. The results obtained by the new method and by either the erythrocytes partitioning technique or more conventional methods (ultrafiltration and equilibrium dialysis) are identical, confirming that the new method produces valid results even for drugs that are strongly bound to plasma proteins. Precision and accuracy of the data in the cases of very low and high fu values are comparable, indicating that the method is especially suited for highly lipophilic drugs that tend to adsorb to surfaces compared with other methods, like ultrafiltration or equilibrium dialysis, that may produce biased data. The method is also useful for the determination of binding parameters and the pH dependence of fu. In summary, this assay is well suited for high-throughput determination of protein binding during drug discovery and for extended protein binding studies during drug development. © 2004 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 93: 816,830, 2004 [source] Matrix effects in quantitative pesticide analysis using liquid chromatography,mass spectrometryMASS SPECTROMETRY REVIEWS, Issue 6 2006W.M.A. Niessen Abstract Combined liquid chromatography,mass spectrometry using electrospray or atmospheric-pressure chemical ionization has become an important tool in the quantitative analysis of pesticide residues in various matrices in relation to environmental analysis, food safety, and biological exposure monitoring. One of the major problems in the quantitative analysis using LC,MS is that compound and matrix-dependent response suppression or enhancement may occur, the so-called matrix effect. This article reviews issues related to matrix effects, focusing on quantitative pesticide analysis, but also paying attention to expertise with respect to matrix effects acquired in other application areas of LC,MS, especially quantitative bioanalysis in the course of drug development. © 2006 Wiley Periodicals, Inc. [source] Carbonic anhydrase IX: A new druggable target for the design of antitumor agentsMEDICINAL RESEARCH REVIEWS, Issue 3 2008Jean-Yves Winum Abstract Carbonic anhydrases (CAs, EC 4.2.1.1) are a family of enzymes widespread in all life kingdoms. In mammals, isozyme CA IX is highly overexpressed in many cancer types being present in few normal tissues. Its expression is strongly induced by hypoxia present in many tumors, being regulated by the HIF transcription factor and correlated with a poor response to classical chemo- and radiotherapies. CA IX was recently shown to contribute to acidification of the tumor environment, by efficiently catalyzing the hydration of carbon dioxide to bicarbonate and protons with its extracellularly situated active site, leading both to the acquisition of metastasic phenotypes and to chemoresistance with weakly basic anticancer drugs. Inhibition of this enzymatic activity by specific and potent inhibitors was shown to revert these acidification processes, establishing a clear-cut role of CA IX in tumorigenesis. The development of a wide range of potent and selective CA IX inhibitors belonging to diverse chemical classes, such as membrane-impermeant, fluorescent or metal-containing such agents, could thus provide useful tools for highlighting the exact role of CA IX in hypoxic cancers, to control the pH (im)balance of tumor cells, and to develop novel diagnostic or therapeutic applications for the management of tumors. Indeed, both fluorescent inhibitors or positively charged, membrane impermeant sulfonamides have been recently developed as potent CA IX inhibitors and used as proof-of-concept tools for demonstrating that CA IX constitutes a novel and interesting target for the anticancer drug development. © 2007 Wiley Periodicals, Inc. Med Res Rev, 28, No. 3, 445,463, 2008 [source] Recent advances in antimalarial drug developmentMEDICINAL RESEARCH REVIEWS, Issue 1 2007Suryanaryana Vangapandu Abstract Malaria caused by protozoa of the genus Plasmodium, because of its prevalence, virulence, and drug resistance, is the most serious and widespread parasitic disease encountered by mankind. The inadequate armory of drugs in widespread use for the treatment of malaria, development of strains resistant to commonly used drugs such as chloroquine, and the lack of affordable new drugs are the limiting factors in the fight against malaria. These factors underscore the continuing need of research for new classes of antimalarial agents, and a re-examination of the existing antimalarial drugs that may be effective against resistant strains. This review provides an in-depth look at the most significant progress made during the past 10 years in antimalarial drug development. © 2006 Wiley Periodicals, Inc. Med Res Rev, 27, No. 1, 65,107, 2007 [source] |