Home About us Contact | |||
Downstream Signaling Events (downstream + signaling_event)
Selected AbstractsRESEARCH ARTICLE: Fungicidal activity of amiodarone is tightly coupled to calcium influxFEMS YEAST RESEARCH, Issue 3 2008Sabina Muend Abstract The antiarrhythmic drug amiodarone has microbicidal activity against fungi, bacteria and protozoa. In Saccharomyces cerevisiae, amiodarone triggers an immediate burst of cytosolic Ca2+, followed by cell death markers. Ca2+ transients are a common response to many forms of environmental insults and toxic compounds, including osmotic and pH shock, endoplasmic reticulum stress, and high levels of mating pheromone. Downstream signaling events involving calmodulin, calcineurin and the transcription factor Crz1 are critical in mediating cell survival in response to stress. In this study we asked whether amiodarone induced Ca2+ influx was beneficial, toxic or a bystander effect unrelated to the fungicidal effect of the drug. We show that downregulation of Ca2+ channel activity in stationary phase cells correlates with increased resistance to amiodarone. In actively growing cells, extracellular Ca2+ modulated the size and shape of the Ca2+ transient and directly influenced amiodarone toxicity. Paradoxically, protection was achieved both by removal of external Ca2+ or by adding high levels of CaCl2 (10 mM) to block the drug induced Ca2+ burst. Our results support a model in which the fungicidal activity of amiodarone is mediated by Ca2+ stress, and highlight the pathway of Ca2+ mediated cell death as a promising target for antifungal drug development. [source] Hypoxia-inducible factor 1, is up-regulated by oncostatin M and participates in oncostatin M signaling,HEPATOLOGY, Issue 1 2009Stefan Vollmer The interleukin-6,type cytokine oncostatin M (OSM) acts via the Janus kinase/signal transducer and activator of transcription pathway as well as via activation of mitogen-activated protein kinases and is known to critically regulate processes such as liver development and regeneration, hematopoiesis, and angiogenesis, which are also determined by hypoxia with the hypoxia-inducible factor 1, (HIF1,) as a key component. Here we show that treatment of hepatocytes and hepatoma cells with OSM leads to an increased protein level of HIF1, under normoxic and hypoxic conditions. Furthermore, the OSM-dependent HIF1, increase is mediated via Janus kinase/signal transducer and activator of transcription 3 and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2 pathways. OSM-mediated HIF1, up-regulation did not result from an increase in HIF1, protein stability but from increased transcription from the HIF1, gene. In addition, we show that the OSM-induced HIF1, gene transcription and the resulting enhanced HIF1, protein levels are important for the OSM-dependent vascular endothelial growth factor and plasminogen activator inhibitor 1 gene induction associated with several diseases. Conclusion: HIF1, levels increase significantly after treatment of hepatocytes and hepatoma cells with OSM, and HIF1, contributes to OSM downstream signaling events, pointing to a cross-talk between cytokine and hypoxia signaling in processes such as liver development and regeneration. (HEPATOLOGY 2009.) [source] Reactive Oxygen Species and Signal TransductionIUBMB LIFE, Issue 1 2001Toren Finkel Abstract Increasing evidence suggests a role for intracellular reactive oxygen species (ROS) as mediators of normal and pathological signal transduction pathways. In particular, a growing list of recent reports have demonstrated a rapid and significant increases in intracellular ROS following growth factor or cytokine stimulation. These ROS appear essential for a host of downstream signaling events. Biochemical characterization of this ligand-activated ROS production has revealed important information regarding the molecular composition of the cellular oxidases and the regulation of their activity by small GTPases. Work is proceeding on identifying strategies to identify how ROS might specifically regulate signaling pathways by altering the activity of direct target molecules. This review will focus on the progress in the rapid emerging area of oxidant or redox-dependent signal transduction and speculate how these insights might alter our view and treatment of diseases thought to be caused by oxidative stress. [source] Tumor necrosis factor-alpha (TNF-,) regulates Toll-like receptor 2 (TLR2) expression in microgliaJOURNAL OF NEUROCHEMISTRY, Issue 4 2007Mohsin Md. Abstract Microglia represent one effector arm of CNS innate immunity as evident by their role in pathogen recognition. We previously reported that exposure of microglia to Staphylococcus aureus (S. aureus), a prevalent CNS pathogen, led to elevated Toll-like receptor 2 (TLR2) expression, a pattern recognition receptor capable of recognizing conserved structural motifs associated with gram-positive bacteria such as S. aureus. In this study, we demonstrate that the proinflammatory cytokine tumor necrosis factor-, (TNF-,) enhances TLR2 expression in microglia, whereas interleukin-1, has no significant effect. To determine the downstream signaling events responsible for elevated microglial TLR2 expression in response to TNF-,, a series of signal transduction inhibitors were employed. Treatment with caffeic acid phenethyl ester, an inhibitor of redox-mediated nuclear factor-kappa B activation, significantly attenuated TNF-,-induced TLR2 expression. Similar results were observed with the IKK-2 and I,B-, inhibitors SC-514 and BAY 11-7082, respectively. In contrast, no significant alterations in TLR2 expression were observed with protein kinase C or p38 mitogen-activated protein kinase inhibitors. A definitive role for TNF-, was demonstrated by the inability of S. aureus to augment TLR2 expression in microglia isolated from TNF-, knockout mice. In addition, TLR2 expression was significantly attenuated in brain abscesses of TNF-, knockout mice. Collectively, these results indicate that in response to S. aureus, TNF-, acts in an autocrine/paracrine manner to enhance TLR2 expression in microglia and that this effect is mediated, in part, by activation of the nuclear factor-kappa B pathway. [source] |