Downstream Sections (downstream + section)

Distribution by Scientific Domains


Selected Abstracts


Role of habitat degradation in determining fish distribution and abundance along the lowland Warta River, Poland

JOURNAL OF APPLIED ICHTHYOLOGY, Issue 1 2007
A. Kruk
Summary The distribution and abundance of fish collected in 1996,1998 are compared in three river sections X, Y and Z in the 808-km-long Warta River, Poland. The upper section, X, was least human-modified, the middle section, Y, was the most polluted by industry and regulated, and the downstream section, Z, was moderately disturbed. The differences between X and Y in concentrations of dissolved oxygen, volatile phenols and nitrite nitrogen, and in the index of availability of hiding places, were highly significant because these parameters were several times worse in the Y section; in the Z section they assumed intermediate values. Although the abundance of certain fish species was changing along the downstream river gradient (i.e. differed the most between X and Z), both the Kohonen artificial neural network (SOM) and assemblage indices showed the biggest differences between X and Y, thus confirming the crucial role of the degradation of aquatic environment in shaping fish assemblages. The latter result ensued from the reaction of the rheophilic burbot, stone loach, gudgeon, chub and dace, which were most abundant in X, almost absent in Y and reoccurring in Z (although less numerous when compared with X). The opposite was recorded for mud loach, tench, ide and silver bream, which were most abundant in the degraded section Y, probably because of weak competition with the almost-absent rheophils. The abundance of two generalists, roach and pike, was similar in all three sections, i.e. changed neither along the downstream nor in the degradation gradient. [source]


Effects of sand sedimentation on the macroinvertebrate fauna of lowland streams: are the effects consistent?

FRESHWATER BIOLOGY, Issue 1 2006
BARBARA J. DOWNES
Summary 1. In lowland streams sand sedimentation can produce sand slugs: very slow moving, discrete volumes of sand that are created episodically. Hypothetically, such sedimentation causes losses of habitat and fauna but little is known about the effects of sand slugs. In south-eastern Australia sand slugs are widespread, especially in streams with granitic catchments. 2. This study in north-central Victoria was centred on three streams that rise in the Strathbogie Ranges and flow out onto lowland plains, where they contain sand slugs. Below the sand slugs, the streams are slow-flowing ,chains of ponds' with a clay streambed. To correct for potential upstream-downstream confounding of comparisons, two unsanded, nearby streams were included as potential controls. Habitat measurements and faunal samples were taken in Spring 1998, from three sites in the sand slug and three sites in the clay-bed, downstream sections of each impacted stream, as well as from three sites in commensurate upstream and downstream sections of the control streams. 3. The sand-slugged sections had significantly higher velocities, shallower depths and less coarse woody debris than the unsanded downstream sections. Macroinvertebrate taxon richness and abundance showed some significant differences between the sand and clay sections compared with commensurate up- and downstream locations in the control streams. Effects were not uniform, however. In Castle Creek there were no significant differences between the sand and clay sections, in Pranjip-Ninemile Creek taxon richness and abundances were higher in sand than in the clay sections, whereas in Creightons Creek the ,expected' results of lower taxon richness and abundance in the sand were found. 4. Of the 40 most common taxa, only eight provided a clear signal related to sand and, of these, one (Slavina sp.) occurred only in the sand slugs, whereas the other seven had significantly higher numbers in the clay sections. Of these taxa, three were ostracods, three were chironomids and one was a tubificid oligochaete, all taxa that live in detritus-rich environments. Overall faunal composition did not show a clear distinction though, between sandy and clay sites. The sand slug community of Creightons Creek was very different from the other communities in all of the streams. There were clear differences in community composition between the sand-affected and the control streams, even for downstream, clay sections, suggesting they cannot act as controls for the impacted sections of the sand-slugged streams. 5. Differences between streams within categories (particularly between sand-slugged streams) and between sites in the same section of stream accounted for most of the variability in species richness and the abundances of each of the 40 most common taxa. That finding was repeated when data were examined at the family level, for both numbers of families per sample and collated lists of families occurring across sites. These results strongly suggest that the effects of sedimentation by sand slugs do not overwhelm background variation in macroinvertebrate density and diversity. Overall the results suggest that many taxa may respond individually, and that there is much variation between sand-affected streams even over relatively small (approximately <10 km) spatial scales. [source]


Spatial patterns of the biological traits of freshwater fish communities in south-west France

JOURNAL OF FISH BIOLOGY, Issue 2 2005
F. Santoul
Spatial patterns in the combinations of biological traits of fish communities were studied in the Garonne River system (57 000 km2, south-west France). Fish species assemblages were recorded at 554 sampling sites, and the biological traits of species were described using a fuzzy-coding method. A co-inertia analysis of species distributions and biological traits identified some spatial patterns of species trait combinations. Fish species richness progressively increased from up- to downstream sections, and the longitudinal patterns of fish assemblages partitioned the river into clear biogeographic areas, such as the brown trout Salmo trutta(headwater streams), the grayling Thymallus thymallus, the barbel Barbus barbus and the bream Abramis brama zones (most downstream sections), which fitted with Huet's well-known zonation for western European rivers. Only a few biological traits, chiefly related to life-history attributes, significantly influenced the observed fish distributions. Fecundity, potential size, maximum age and reproductive factor increased from headwater to plain reaches. As a theoretical framework for assessing and predicting the functional organization of stream fish communities, spatial variations in species traits can be related to habitat conditions, thus providing explicit spatial schemes that may be useful to the design of both scientific studies and river management. [source]