Donor Pretreatment (donor + pretreatment)

Distribution by Scientific Domains


Selected Abstracts


Donor Pretreatment with Tetrahydrobiopterin Saves Pancreatic Isografts from Ischemia Reperfusion Injury in a Mouse Model

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 10 2010
M. Maglione
Depletion of the nitric oxide synthase cofactor tetrahydrobiopterin (H4B) during ischemia and reperfusion is associated with severe graft pancreatitis. Since clinically feasible approaches to prevent ischemia reperfusion injury (IRI) by H4B-substitution are missing we investigated its therapeutic potential in a murine pancreas transplantation model using different treatment regimens. Grafts were subjected to 16 h cold ischemia time (CIT) and different treatment regimens: no treatment, 160 ,M H4B to perfusion solution, H4B 50 mg/kg prior to reperfusion and H4B 50 mg/kg before recovery of organs. Nontransplanted animals served as controls. Recipient survival and endocrine graft function were assessed. Graft microcirculation was analyzed 2 h after reperfusion by intravital fluorescence microscopy. Parenchymal damage was assessed by histology and nitrotyrosine immunohistochemistry, H4B tissue levels by high pressure liquid chromatography (HPLC). Compared to nontransplanted controls prolonged CIT resulted in significant microcirculatory deterioration. Different efficacy according to route and timing of administration could be observed. Only donor pretreatment with H4B resulted in almost completely abrogated IRI-related damage showing graft microcirculation comparable to nontransplanted controls and restored intragraft H4B levels, resulting in significant reduction of parenchymal damage (p < 0.002) and improved survival and endocrine function (p = 0.0002 each). H4B donor pretreatment abrogates ischemia-induced parenchymal damage and represents a promising strategy to prevent IRI following pancreas transplantation. [source]


Cold liver ischemia-reperfusion injury critically depends on liver T cells and is improved by donor pretreatment with interleukin 10 in mice

HEPATOLOGY, Issue 6 2000
Olivier Le Moine M.D.
Kupffer cells are thought to mediate most of the deleterious effects of liver ischemia-reperfusion injury. The role of liver T cells and the impact of resident cell deactivation by interleukin 10 (IL-10) have never been addressed. Using a model of ex vivo liver cold ischemia and reperfusion, we assessed liver injury, tumor necrosis factor (TNF) and interferon gamma (IFN-,) release from livers of balb/c mice, nude mice, nude mice reconstituted with T cells, and gadolinium balb/c pretreated mice. The anti-inflammatory cytokine IL-10 was then used to define the best strategy of administration potentially able to modulate ischemia-reperfusion injury. For this purpose IL-10 was administered to the donor before liver harvesting, in the preservation medium during cold ischemia or during reperfusion. TNF and IFN-, were released time dependently and paralleled liver injury after reperfusion of cold preserved livers. Reperfused livers from nude or gadolinium pretreated mice disclosed a dramatic decrease in TNF and IFN-, release. Tissue injury was reduced by 51% in the absence of T cells and by 88% when Kupffer cells were deactivated. This effect was reverted by T-cell transfer to nude mice. Only donor pretreatment with IL-10 or IL-10 infusion during reperfusion led to a significant decrease in liver injury, TNF, and IFN-, release (,66% or ,41%, ,95% or ,94%, and ,70% or ,70%, respectively). In conclusion, liver resident T cells are critically involved in cold ischemia-reperfusion injury and pretreatment of the donor with IL-10 decreases liver injury and the release of T-cell, and macrophage-dependent cytokines. [source]


Donor Pretreatment with Tetrahydrobiopterin Saves Pancreatic Isografts from Ischemia Reperfusion Injury in a Mouse Model

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 10 2010
M. Maglione
Depletion of the nitric oxide synthase cofactor tetrahydrobiopterin (H4B) during ischemia and reperfusion is associated with severe graft pancreatitis. Since clinically feasible approaches to prevent ischemia reperfusion injury (IRI) by H4B-substitution are missing we investigated its therapeutic potential in a murine pancreas transplantation model using different treatment regimens. Grafts were subjected to 16 h cold ischemia time (CIT) and different treatment regimens: no treatment, 160 ,M H4B to perfusion solution, H4B 50 mg/kg prior to reperfusion and H4B 50 mg/kg before recovery of organs. Nontransplanted animals served as controls. Recipient survival and endocrine graft function were assessed. Graft microcirculation was analyzed 2 h after reperfusion by intravital fluorescence microscopy. Parenchymal damage was assessed by histology and nitrotyrosine immunohistochemistry, H4B tissue levels by high pressure liquid chromatography (HPLC). Compared to nontransplanted controls prolonged CIT resulted in significant microcirculatory deterioration. Different efficacy according to route and timing of administration could be observed. Only donor pretreatment with H4B resulted in almost completely abrogated IRI-related damage showing graft microcirculation comparable to nontransplanted controls and restored intragraft H4B levels, resulting in significant reduction of parenchymal damage (p < 0.002) and improved survival and endocrine function (p = 0.0002 each). H4B donor pretreatment abrogates ischemia-induced parenchymal damage and represents a promising strategy to prevent IRI following pancreas transplantation. [source]