Donor Material (donor + material)

Distribution by Scientific Domains


Selected Abstracts


Photo-induced Charge Transfer and Relaxation of Persistent Charge Carriers in Polymer/Nanocrystal Composites for Applications in Hybrid Solar Cells

ADVANCED FUNCTIONAL MATERIALS, Issue 23 2009
Marc Daniel Heinemann
Abstract The photo-induced charge transfer and the dynamics of persistent charge carriers in blends of semiconducting polymers and nanocrystals are investigated. Regioregular poly(3-hexylthiophene) (P3HT) is used as the electron donor material, while the acceptor moiety is established by CdSe nanocrystals (nc-CdSe) prepared via colloidal synthesis. As a reference system, organic blends of P3HT and [6,6]-phenyl C61 -butyric acid methyl ester (PCBM) are studied as well. The light-induced charge transfer between P3HT and the acceptor materials is studied by photoluminescence (PL), photo-induced absorption (PIA) and light-induced electron spin resonance spectroscopy (LESR). Compared to neat P3HT samples, both systems show an intensified formation of polarons in the polymer upon photo-excitation, pointing out successful separation of photogenerated charge carriers. Additionally, relaxation of the persistent charge carriers is investigated, and significant differences are found between the hybrid composite and the purely organic system. While relaxation, reflected in the transient signal decay of the polaron signal, is fast in the organic system, the hybrid blends exhibit long-term persistence. The appearance of a second, slow recombination channel indicates the existence of deep trap states in the hybrid system, which leads to the capture of a large fraction of charge carriers. A change of polymer conformation due to the presence of nc-CdSe is revealed by low temperature LESR measurements and microwave saturation techniques. The impact of the different recombination behavior on the photovoltaic efficiency of both systems is discussed. [source]


Nanoscale Phase Separation and High Photovoltaic Efficiency in Solution-Processed, Small-Molecule Bulk Heterojunction Solar Cells

ADVANCED FUNCTIONAL MATERIALS, Issue 19 2009
Bright Walker
Abstract Research relating to organic solar cells based on solution-processed, bulk heterojunction (BHJ) films has been dominated by polymeric donor materials, as they typically have better film-forming characteristics and film morphology than their small-molecule counterparts. Despite these morphological advantages, semiconducting polymers suffer from synthetic reproducibility and difficult purification procedures, which hinder their commercial viability. Here, a non-polymeric, diketopyrrolopyrrole-based donor material that can be solution processed with a fullerene acceptor to produce good quality films is reported. Thermal annealing leads to suitable phase separation and material distribution so that highly effective BHJ morphologies are obtained. The frontier orbitals of the material are well aligned with those of the fullerene acceptor, allowing efficient electron transfer and suitable open-circuit voltages, leading to power conversion efficiencies of 4.4,±,0.4% under AM1.5G illumination (100,mW cm,2). Small molecules can therefore be solution processed to form high-quality BHJ films, which may be used for low-cost, flexible organic solar cells. [source]


Tuning Conversion Efficiency in Metallo Endohedral Fullerene-Based Organic Photovoltaic Devices

ADVANCED FUNCTIONAL MATERIALS, Issue 14 2009
Russel B. Ross
Abstract Here the influence that 1-(3-hexoxycarbonyl)propyl-1-phenyl-[6,6]-Lu3N@C81, Lu3N@C80,PCBH, a novel acceptor material, has on active layer morphology and the performance of organic photovoltaic (OPV) devices using this material is reported. Polymer/fullerene blend films with poly(3-hexylthiophene), P3HT, donor material and Lu3N@C80,PCBH acceptor material are studied using absorption spectroscopy, grazing incident X-ray diffraction and photocurrent spectra of photovoltaic devices. Due to a smaller molecular orbital offset the OPV devices built with Lu3N@C80,PCBH display increased open circuit voltage over empty cage fullerene acceptors. The photovoltaic performance of these metallo endohedral fullerene blend films is found to be highly impacted by the fullerene loading. The results indicate that the optimized blend ratio in a P3HT matrix differs from a molecular equivalent of an optimized P3HT/[6,6]-phenyl-C61 -butyric methyl ester, C60,PCBM, active layer, and this is related to the physical differences of the C80 fullerene. The influence that active layer annealing has on the OPV performance is further evaluated. Through properly matching the film processing and the donor/acceptor ratio, devices with power conversion efficiency greater than 4% are demonstrated. [source]


Hepatic tissue engineering for adjunct and temporary liver support: Critical technologies

LIVER TRANSPLANTATION, Issue 11 2004
Christina Chan
The severe donor liver shortage, high cost, and complexity of orthotopic liver transplantation have prompted the search for alternative treatment strategies for end-stage liver disease, which would require less donor material, be cheaper, and less invasive. Hepatic tissue engineering encompasses several approaches to develop adjunct internal liver support methods, such as hepatocyte transplantation and implantable hepatocyte-based devices, as well as temporary extracorporeal liver support techniques, such as bioartificial liver assist devices. Many tissue engineered liver support systems have passed the "proof of principle" test in preclinical and clinical studies; however, they have not yet been found sufficiently reliably effective for routine clinical use. In this review we describe, from an engineering perspective, the progress and remaining challenges that must be resolved in order to develop the next generation of implantable and extracorporeal devices for adjunct or temporary liver assist. (Liver Transpl 2004;10:1331,1342.) [source]


Nanoscale Phase Separation and High Photovoltaic Efficiency in Solution-Processed, Small-Molecule Bulk Heterojunction Solar Cells

ADVANCED FUNCTIONAL MATERIALS, Issue 19 2009
Bright Walker
Abstract Research relating to organic solar cells based on solution-processed, bulk heterojunction (BHJ) films has been dominated by polymeric donor materials, as they typically have better film-forming characteristics and film morphology than their small-molecule counterparts. Despite these morphological advantages, semiconducting polymers suffer from synthetic reproducibility and difficult purification procedures, which hinder their commercial viability. Here, a non-polymeric, diketopyrrolopyrrole-based donor material that can be solution processed with a fullerene acceptor to produce good quality films is reported. Thermal annealing leads to suitable phase separation and material distribution so that highly effective BHJ morphologies are obtained. The frontier orbitals of the material are well aligned with those of the fullerene acceptor, allowing efficient electron transfer and suitable open-circuit voltages, leading to power conversion efficiencies of 4.4,±,0.4% under AM1.5G illumination (100,mW cm,2). Small molecules can therefore be solution processed to form high-quality BHJ films, which may be used for low-cost, flexible organic solar cells. [source]


Organic Photovoltaics Using Tetraphenylbenzoporphyrin Complexes as Donor Layers

ADVANCED MATERIALS, Issue 14-15 2009
M. Dolores Perez
Small-molecule solar cells are demonstrated using Pt and Pd tetraphenylbenzoporphyrin as donor materials. High efficiencies are achieved, and the effects of triplet excited state diffusion are studied. The solubility of these molecules allows for the fabrication of solution processed solar cells with relatively high performance. [source]