Dominant Females (dominant + female)

Distribution by Scientific Domains


Selected Abstracts


Spatial organization, group living and ecological correlates in low-density populations of Eurasian badgers, Meles meles

JOURNAL OF ANIMAL ECOLOGY, Issue 3 2002
Eloy Revilla
Summary 1,Territoriality and group living are described in a low-density population of Eurasian badgers, Meles meles L., by studying the patterns of spatial grouping and territory marking, as well as the differences between individuals in some of their characteristics (body condition and dispersal) and in their space use (seasonally, periods of activity and interaction between pairs of individuals) under strong seasonal fluctuations in the availability of the key resource (young rabbits, Oryctolagus cuniculus L.). Finally, the role of the spatial distribution of the main prey (young rabbits) in the development of sociality was also studied in order to test some of the assumptions and predictions of the resource dispersion hypothesis (RDH). 2,Badgers were territorial, showing a flexible system of territory marking, which includes the marking of the most used areas (sett-latrines at the centres of activity) and additionally, at the smaller territories, a system of border-latrines in the areas of contact between territories. The maximum use of border-latrines was associated with the reproductive season, and that of sett-latrines with the season of food scarcity. 3,In the study area where badgers had rabbits as main prey, territories were occupied by small groups of animals, formed by one adult female who reproduced, one adult male who also showed signs of reproductive activity, the cubs of the year (if there was reproduction) and some animals born during previous years, which remained in their natal territory until their dispersal (normally during the mating season of their third or fourth year of life). This system was not strictly fixed as males, given the opportunity, expanded their territories to encompass additional females. Territories in another study site were occupied by one adult female (marked), plus the cubs of the year and another adult individual (unmarked). 4,In winter and spring dominant females and subordinates used only a small fraction of their territories, moved short distances, at a low speed and covering small areas per night. These seasons corresponded with the reproduction of rabbits (highest food availability). Dominant females were the only individuals using all the territory available in the summer (lowest food availability), when badgers had the worst body condition. Food availability increased again in autumn, as did body condition, while range sizes were again reduced. Dominant males used the same proportion of their territories over all seasons. However, in winter (reproductive season) they moved faster, over longer distances, and covered larger areas per period of activity. These results indicate that use of space by dominant males was affected by different factors from that of dominant females and subordinates. 5,RDH does not seem to explain group living in our populations because: (a) territoriality in each pair of primary animals was driven by different factors (trophic resources for females and females for males); (b) dominant males acted as expansionists; and (c) territory size was related to its richness and not to patch dispersion. 6,We propose an integrative hypothesis to explain not only group formation but also interpopulation variability in the social organization of badgers within ecological, demographic and behavioural constraints and in the light of current theory on delayed dispersal. [source]


Long-range call use in dominance-structured Crested Tit Parus cristatus winter groups

JOURNAL OF AVIAN BIOLOGY, Issue 1 2000
Indri?is Krams
In this study on free-ranging Crested Tits Parus cristatus, I examine the relationship between social dominance and the frequency of use of long-range communication calls. Calling rates of trills were highest among socially dominant individuals and they gave more calls when close to the boundary of their territories. Dominant females uttered fewer calls than their mates. However, they gave significantly more calls than subordinate males and subordinate females, the latter calling least. A removal and playback experiment revealed a relationship between the utterance of trilled calls and the defence of the winter territory in the Crested Tit. Although territorial vocalizations could incur costs, territorial individuals may gain from improved winter survival by decreasing the risk of food stealing by Crested Tits from adjacent territories. [source]


Divorce, dispersal and incest avoidance in the cooperatively breeding superb fairy-wren Malurus cyaneus

JOURNAL OF ANIMAL ECOLOGY, Issue 2 2003
Andrew Cockburn
Summary 1Between 1988 and 2001, we studied social relationships in the superb fairy-wren Malurus cyaneus (Latham), a cooperative breeder with male helpers in which extra-group fertilizations are more common than within-pair fertilizations. 2Unlike other fairy-wren species, females never bred on their natal territory. First-year females dispersed either directly from their natal territory to a breeding vacancy or to a foreign ,staging-post' territory where they spent their first winter as a subordinate. Females dispersing to a foreign territory settled in larger groups. Females on foreign territories inherited the territory if the dominant female died, and were sometimes able to split the territory into two by pairing with a helper male. However, most dispersed again to obtain a vacancy. 3Females dispersing from a staging post usually gained a neighbouring vacancy, but females gaining a vacancy directly from their natal territory travelled further, perhaps to avoid pairing or mating with related males. 4Females frequently divorced their partner, although the majority of relationships were terminated by the death of one of the pair. If death did not intervene, one-third of pairings were terminated by female-initiated divorce within 1000 days. 5Three divorce syndromes were recognized. First, females that failed to obtain a preferred territory moved to territories with more helpers. Secondly, females that became paired to their sons when their partner died usually divorced away from them. Thirdly, females that have been in a long relationship divorce once a son has gained the senior helper position. 6Dispersal to avoid pairing with sons is consistent with incest avoidance. However, there may be two additional benefits. Mothers do not mate with their sons, so dispersal by the mother liberates her sons to compete for within-group matings. Further, divorcing once their son has become a breeder or a senior helper allows the female to start sons in a queue for dominance on another territory. Females that do not take this option face constraints on their ability to recruit more sons into the local neighbourhood. [source]


Characterization of Gonadotrophin-Releasing Hormone Precursor cDNA in the Old World Mole-Rat Cryptomys Hottentotus Pretoriae: High Degree of Identity with the New World Guinea Pig Sequence

JOURNAL OF NEUROENDOCRINOLOGY, Issue 5 2005
T. Kalamatianos
Abstract Regulation of pituitary gonadotrophins by the decapeptide gonadotrophin-releasing hormone 1 (GnRH1) is crucial for the development and maintenance of reproductive functions. A common amino acid sequence for this decapeptide, designated as ,mammalian' GnRH, has been identified in all mammals thus far investigated with the exception of the guinea pig, in which there are two amino acid substitutions. Among hystricognath rodents, the members of the family Bathyergidae regulate reproduction in response to diverse cues. Thus, highveld mole-rats (Cryptomys hottentotus pretoriae) are social bathyergids in which breeding is restricted to a particular season in the dominant female, but continuously suppressed in subordinate colony members. Elucidation of reproductive control in these animals will be facilitated by characterization of their GnRH1 gene. A partial sequence of GnRH1 precursor cDNA was isolated and characterized. Comparative analysis revealed the highest degree of identity (86%) to guinea pig GnRH1 precursor mRNA. Nevertheless, the deduced amino acid sequence of the mole-rat decapeptide is identical to the ,mammalian' sequence rather than that of guinea pigs. Successful detection of GnRH1-synthesizing neurones using either a guinea pig GnRH1 riboprobe or an antibody against the ,mammalian' decapeptide is consistent with the guinea pig-like sequence for the precursor and the classic ,mammalian' form for the decapeptide. The high degree of identity in the GnRH1 precursor sequence between this Old World mole-rat and the New World guinea pig is consistent with the theory that caviomorphs and phiomorphs originated from a common ancestral line in the Palaeocene to mid Eocene, some 63,45 million years ago. [source]


Spatial organization, group living and ecological correlates in low-density populations of Eurasian badgers, Meles meles

JOURNAL OF ANIMAL ECOLOGY, Issue 3 2002
Eloy Revilla
Summary 1,Territoriality and group living are described in a low-density population of Eurasian badgers, Meles meles L., by studying the patterns of spatial grouping and territory marking, as well as the differences between individuals in some of their characteristics (body condition and dispersal) and in their space use (seasonally, periods of activity and interaction between pairs of individuals) under strong seasonal fluctuations in the availability of the key resource (young rabbits, Oryctolagus cuniculus L.). Finally, the role of the spatial distribution of the main prey (young rabbits) in the development of sociality was also studied in order to test some of the assumptions and predictions of the resource dispersion hypothesis (RDH). 2,Badgers were territorial, showing a flexible system of territory marking, which includes the marking of the most used areas (sett-latrines at the centres of activity) and additionally, at the smaller territories, a system of border-latrines in the areas of contact between territories. The maximum use of border-latrines was associated with the reproductive season, and that of sett-latrines with the season of food scarcity. 3,In the study area where badgers had rabbits as main prey, territories were occupied by small groups of animals, formed by one adult female who reproduced, one adult male who also showed signs of reproductive activity, the cubs of the year (if there was reproduction) and some animals born during previous years, which remained in their natal territory until their dispersal (normally during the mating season of their third or fourth year of life). This system was not strictly fixed as males, given the opportunity, expanded their territories to encompass additional females. Territories in another study site were occupied by one adult female (marked), plus the cubs of the year and another adult individual (unmarked). 4,In winter and spring dominant females and subordinates used only a small fraction of their territories, moved short distances, at a low speed and covering small areas per night. These seasons corresponded with the reproduction of rabbits (highest food availability). Dominant females were the only individuals using all the territory available in the summer (lowest food availability), when badgers had the worst body condition. Food availability increased again in autumn, as did body condition, while range sizes were again reduced. Dominant males used the same proportion of their territories over all seasons. However, in winter (reproductive season) they moved faster, over longer distances, and covered larger areas per period of activity. These results indicate that use of space by dominant males was affected by different factors from that of dominant females and subordinates. 5,RDH does not seem to explain group living in our populations because: (a) territoriality in each pair of primary animals was driven by different factors (trophic resources for females and females for males); (b) dominant males acted as expansionists; and (c) territory size was related to its richness and not to patch dispersion. 6,We propose an integrative hypothesis to explain not only group formation but also interpopulation variability in the social organization of badgers within ecological, demographic and behavioural constraints and in the light of current theory on delayed dispersal. [source]


Perspective: Masculinized dominant females in a cooperatively breeding species, a case of cross-sexual transfer?

MOLECULAR ECOLOGY, Issue 7 2007
ELLEN D. KETTERSON
This issue of Molecular Ecology includes an exciting article by Aubin-Horth et al. in which they examine behaviour, hormone levels, and gene expression in dominant and subordinate male and female cichlid fishes of the African species Neolamprologus pulcher. Their fascinating experiments take us one important step closer to an understanding of one of life's persistent mysteries: why males differ from females and how such differences develop and evolve. [source]


The relationship between social status and atherosclerosis in male and female monkeys as revealed by meta-analysis

AMERICAN JOURNAL OF PRIMATOLOGY, Issue 9 2009
Jay R. Kaplan
Abstract More than 25 years ago our laboratory reported sex-dependent relationships between social status and coronary artery atherosclerosis among cholesterol-fed cynomolgus monkeys (Macaca fascicularis) maintained in social groups of four to six animals each. Dominant males developed more atherosclerosis than subordinates, but only if housed in recurrently reorganized social groups. In contrast, dominant females developed significantly less atherosclerosis than subordinates, irrespective of social setting. Although we have continued to study these associations, no confirmatory investigations have been reported by other laboratories or using other atherosclerosis-susceptible monkey species. Accordingly, we conducted a meta-analysis of all relevant data sources developed in our laboratory since 1982 to determine whether the originally reported relationships between social status and atherosclerosis reflected robust associations. The sentinel (first) studies were composed of 16 females and 27 males. The current meta-analysis encompassed 419 animals (200 females and 219 males) derived from 11 separate investigations. The results confirmed that, among males, dominant individuals developed more extensive atherosclerosis than subordinates when housed in recurrently reorganized (unstable) social groups in which an estrogen-implanted female was also present. Dominant males in stable social groups tended to have less atherosclerosis than similarly housed subordinates, but this effect was not significant. On the contrary, we found that dominant females developed reliably less atherosclerosis than subordinates. Am. J. Primatol. 71:732,741, 2009. © 2009 Wiley-Liss, Inc. [source]


Influence of the mother's reproductive state on the hormonal status of daughters in marmosets (Callithrix kuhlii)

AMERICAN JOURNAL OF PRIMATOLOGY, Issue 1 2004
Alyssa M. Puffer
Abstract Behavioral and endocrine suppression of reproduction in subordinate females produces the high reproductive skew that characterizes callitrichid primate mating systems. Snowdon et al. [American Journal of Primatology 31:11,21, 1993] reported that the eldest daughters in tamarin families exhibit further endocrinological suppression immediately following the birth of siblings, and suggested that dominant females exert greater control over subordinate endocrinology during this energetically challenging phase of reproduction. We monitored the endocrine status of five Wied's black tufted-ear marmoset daughters before and after their mother delivered infants by measuring concentrations of urinary estradiol (E2), pregnanediol glucuronide (PdG), testosterone (T), and cortisol (CORT). Samples were collected from marmoset daughters 4 weeks prior to and 9 weeks following three consecutive sibling-litter births when the daughters were prepubertal (M=6.1 months of age), peripubertal (M=11.9 months), and postpubertal (M=17.6 months). The birth of infants was associated with reduced ovarian steroid excretion only in the prepubertal daughters. In contrast, ovarian steroid levels tended to increase in the postpubertal daughters. Urinary E2 and T levels in the postpubertal daughters were 73.8% and 37.6% higher, respectively, in the 3 weeks following the birth of infants, relative to prepartum levels. In addition, peak urinary PdG concentrations in peri- and postpubertal daughters were equivalent to luteal phase concentrations in nonpregnant, breeding adult females, and all of the peri- and postpubertal daughters showed clear ovulatory cycles. Cortisol excretion did not change in response to the reproductive status of the mother, nor did the concentrations change across age. Our data suggest that marmoset daughters of potential breeding age are not hormonally suppressed during the mother's peripartum period or her return to fertility. These findings provide an additional example of species diversity in the social regulation of reproduction in callitrichid primates. Am. J. Primatol. 64:29,37, 2004. © 2004 Wiley-Liss, Inc. [source]


Reproductive hierarchies in the African allodapine bee Allodapula dichroa (Apidae: Xylocopinae) and ancestral forms of sociality

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2009
SIMON M. TIERNEY
The social organization of allodapine bees has been described in detail for most genera, although there remains a notable gap for one major lineage, the genus Allodapula. Here, we provide the first detailed study of social organization in Allodapula dichroa. Colony sizes are small and the frequency of cooperative nesting is low compared with other allodapine taxa, but there is very clear evidence for reproductive differentiation among adult nestmates. Reproductively dominant females tend to be larger than their nestmates and have much higher levels of wing wear, suggesting that they perform most foraging activities. Multi-female colonies have: (1) lower rates of complete brood absence, suggesting a substantial benefit to cooperative nesting; and (2) larger numbers of brood, suggesting that the presence of a second adult female leads to a greater reproductive output. These data suggest a major phylogenetic split in the form of social organization within the allodapines. In the genus Macrogalea (sister clade to all other allodapines), body size does not preclude young females from laying eggs, and there appears to be, at most, weak reproductive queues. However, in most other allodapines, reproductive hierarchies are prominent and younger and/or smaller females queue for reproductive opportunities, adopt permanently subordinate roles, or disperse. Interestingly, the most common forms of reproductive hierarchies in allodapines do not involve subordinates undertaking foraging roles before reproduction, but instead involve the delaying of both reproduction and foraging. This has implications for the understanding of suggested developmental ground plans in the early stages of social evolution. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 520,530. [source]