Domain Protein (domain + protein)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


BTB and TAZ domain scaffold proteins perform a crucial function in Arabidopsis development

THE PLANT JOURNAL, Issue 1 2009
Hélčne S. Robert
Summary In Arabidopsis, bric-a-brac, tramtrack and broad (BTB) domain scaffold proteins form a family of 80 proteins that have involvement in various signaling pathways. The five members of the subfamily of BTB AND TAZ DOMAIN proteins (BT1,BT5) have a typical domain structure that is only observed in land plants. Here, we present a functional analysis of the BT family, of which at least four members are encoded by auxin-responsive genes. BT1 is a short-lived protein that is characteristically targeted for degradation by the 26S proteasome. Expression pattern, gene structure and sequence analyses indicate that BT1 and BT2 are closely related. They both localize to the nucleus and the cytosol, whereas the remaining BT proteins were determined as cytosolic proteins. Detailed molecular and phenotypic analysis of plants segregating for null mutations in the BT family revealed substantial redundancy among the BT members, and highlighted that BT proteins perform crucial roles in both male and female gametophyte development. BT2 seems to be the predominant gene in this process, in which it is functionally replaced by BT3 and BT1 through reciprocal transcription regulation. Compensational expression alters the steady-state mRNA levels among the remaining BT family members when other BT members are lost, and this contributes towards functional redundancy. Our data provide a surprising example of functional redundancy among genes required during gametophyte development, something that could not be detected in the current screens for gametophyte mutants. [source]


Functional studies of an evolutionarily conserved, cytochrome b5 domain protein reveal a specific role in axonemal organisation and the general phenomenon of post-division axonemal growth in trypanosomes

CYTOSKELETON, Issue 1 2009
Helen Farr
Abstract Eukaryotic cilia and flagella are highly conserved structures composed of a canonical 9+2 microtubule axoneme. Several recent proteomic studies of cilia and flagella have been published, including a proteome of the flagellum of the protozoan parasite Trypanosoma brucei. Comparing proteomes reveals many novel proteins that appear to be widely conserved in evolution. Amongst these, we found a previously uncharacterised protein which localised to the axoneme in T. brucei, and therefore named it Trypanosome Axonemal protein (TAX)-2. Ablation of the protein using RNA interference in the procyclic form of the parasite has no effect on growth but causes a reduction in motility. Using transmission electron microscopy, various structural defects were seen in some axonemes, most frequently with microtubule doublets missing from the 9+2 arrangement. RNAi knockdown of TAX-2 expression in the bloodstream form of the parasite caused defects in growth and cytokinesis, a further example of the effects caused by loss of flagellar function in bloodstream form T. brucei. In procyclic cells we used a new set of vectors to ablate protein expression in cells expressing a GFP:TAX-2 fusion protein, which enabled us to easily quantify protein reduction and visualise axonemes made before and after RNAi induction. This establishes a useful generic technique but also revealed a specific observation that the new flagellum on the daughter trypanosome continues growth after cytokinesis. Our results provide evidence for TAX-2 function within the axoneme, where we suggest that it is involved in processes linking the outer doublet microtubules and the central pair. Cell Motil. Cytoskeleton 2008. © 2008 Wiley-Liss, Inc. [source]


Ki-1/57 interacts with PRMT1 and is a substrate for arginine methylation

FEBS JOURNAL, Issue 17 2006
Dario O. Passos
The human 57 kDa Ki-1 antigen (Ki-1/57) is a cytoplasmic and nuclear protein, associated with Ser/Thr protein kinase activity, and phosphorylated at the serine and threonine residues upon cellular activation. We have shown that Ki-1/57 interacts with chromo-helicase DNA-binding domain protein 3 and with the adaptor/signaling protein receptor of activated kinase 1 in the nucleus. Among the identified proteins that interacted with Ki-1/57 in a yeast two-hybrid system was the protein arginine-methyltransferase-1 (PRMT1). Most interestingly, when PRMT1 was used as bait in a yeast two-hybrid system we were able to identify Ki-1/57 as prey among 14 other interacting proteins, the majority of which are involved in RNA metabolism or in the regulation of transcription. We found that Ki-1/57 and its putative paralog CGI-55 have two conserved Gly/Arg-rich motif clusters (RGG/RXR box, where X is any amino acid) that may be substrates for arginine-methylation by PRMT1. We observed that all Ki-1/57 protein fragments containing RGG/RXR box clusters interact with PRMT1 and are targets for methylation in vitro. Furthermore, we found that Ki-1/57 is a target for methylation in vivo. Using immunofluorescence experiments we observed that treatment of HeLa cells with an inhibitor of methylation, adenosine-2,,3,-dialdehyde (Adox), led to a reduction in the cytoplasmic immunostaining of Ki-1/57, whereas its paralog CGI-55 was partially redistributed from the nucleus to the cytoplasm upon Adox treatment. In summary, our data show that the yeast two-hybrid assay is an effective system for identifying novel PRMT arginine-methylation substrates and may be successfully applied to other members of the growing family of PRMTs. [source]


Spectroscopic and DNA-binding characterization of the isolated heme-bound basic helix,loop,helix-PAS-A domain of neuronal PAS protein 2 (NPAS2), a transcription activator protein associated with circadian rhythms

FEBS JOURNAL, Issue 11 2006
Yuji Mukaiyama
Neuronal PAS domain protein 2 (NPAS2) is a circadian rhythm-associated transcription factor with two heme-binding sites on two PAS domains. In the present study, we compared the optical absorption spectra, resonance Raman spectra, heme-binding kinetics and DNA-binding characteristics of the isolated fragment containing the N-terminal basic helix,loop,helix (bHLH) of the first PAS (PAS-A) domain of NPAS2 with those of the PAS-A domain alone. We found that the heme-bound bHLH-PAS-A domain mainly exists as a dimer in solution. The Soret absorption peak of the Fe(III) complex for bHLH-PAS-A (421 nm) was located at a wavelength 9 nm higher than for isolated PAS-A (412 nm). The axial ligand trans to CO in bHLH-PAS-A appears to be His, based on the resonance Raman spectra. In addition, the rate constant for heme association with apo-bHLH-PAS (3.3 × 107 mol,1·s,1) was more than two orders of magnitude higher than for association with apo-PAS-A (< 105 mol,1·s,1). These results suggest that the bHLH domain assists in stable heme binding to NPAS2. Both optical and resonance Raman spectra indicated that the Fe(II),NO heme complex is five-coordinated. Using the quartz-crystal microbalance method, we found that the bHLH-PAS-A domain binds specifically to the E-box DNA sequence in the presence, but not in the absence, of heme. On the basis of these results, we discuss the mode of heme binding by bHLH-PAS-A and its potential role in regulating DNA binding. [source]


Bacterial IscU is a well folded and functional single domain protein

FEBS JOURNAL, Issue 11 2004
Salvatore Adinolfi
Iron,sulfur clusters are widely represented in most organisms, but the mechanism of their formation is not fully understood. Of the two main proteins involved in cluster formation, NifS/IscS and NifU/IscU, only the former has been well studied from a structural point of view. Here we report an extensive structural characterization of Escherichia coli IscU. We show by a variety of physico-chemical techniques that E. coli IscU construct can be expressed to high purity as a monomeric protein, characterized by an ,, fold with high ,-helix content. The high melting temperature and the reversibility of the thermal unfolding curve (as measured by CD spectroscopy) hint at a well ordered stable fold. The excellent dispersion of cross peaks in the 1H- 15N correlation spectrum is consistent with these observations. Monomeric E. coli IscU is able to provide a scaffold for Iron,sulfur cluster assembly, but has no direct interaction with either Fe(II) or Fe(III) ions, suggesting the need of further partners to achieve a stable interaction. [source]


Solution structure of the matrix attachment region-binding domain of chicken MeCP2

FEBS JOURNAL, Issue 15 2003
Björn Heitmann
Methyl-CpG-binding protein 2 (MeCP2) is a multifunctional protein involved in chromatin organization and silencing of methylated DNA. MAR-BD, a 125-amino-acid residue domain of chicken MeCP2 (cMeCP2, originally named ARBP), is the minimal protein fragment required to recognize MAR elements and mouse satellite DNA. Here we report the solution structure of MAR-BD as determined by multidimensional heteronuclear NMR spectroscopy. The global fold of this domain is very similar to that of rat MeCP2 MBD and MBD1 MBD (the methyl-CpG-binding domains of rat MeCP2 and methyl-CpG-binding domain protein 1, respectively), exhibiting a three-stranded antiparallel ,-sheet and an ,-helix ,1. We show that the C-terminal portion of MAR-BD also contains an amphipathic helical coil, ,2/,3. The hydrophilic residues of this coil form a surface opposite the DNA interface, available for interactions with other domains of MeCP2 or other proteins. Spectroscopic studies of the complex formed by MAR-BD and a 15-bp fragment of a high-affinity binding site from mouse satellite DNA indicates that the coil is also involved in protein·DNA interactions. These studies provide a basis for discussion of the consequences of six missense mutations within the helical coil found in Rett syndrome cases. [source]


Dynamic changes in the epigenomic state and nuclear organization of differentiating mouse embryonic stem cells

GENES TO CELLS, Issue 4 2007
Satoru Kobayakawa
Changes in nuclear organization and the epigenetic state of the genome are important driving forces for developmental gene expression. However, a strategy that allows simultaneous visualization of the dynamics of the epigenomic state and nuclear structure has been lacking to date. We established an experimental system to observe global DNA methylation in living mouse embryonic stem (ES) cells. The methylated DNA binding domain (MBD) and the nuclear localization signal (nls) sequence coding for human methyl CpG-binding domain protein 1 (MBD1) were fused to the enhanced green fluorescent protein (EGFP) reporter gene, and ES cell lines carrying the construct (EGFP-MBD-nls) were established. The EGFP-MBD-nls protein was used to follow DNA methylation in situ under physiological conditions. We also monitored the formation and rearrangement of methylated heterochromatin using EGFP-MBD-nls. Pluripotent mouse ES cells showed unique nuclear organization in that methylated centromeric heterochromatin coalesced to form large clusters around the nucleoli. Upon differentiation, the organization of these heterochromatin clusters changed dramatically. Time-lapse microscopy successfully captured a moment of dramatic change in chromosome positioning during the transition between two differentiation stages. Thus, this experimental system should facilitate studies focusing on relationships between nuclear organization, epigenetic status and cell differentiation. [source]


Potential pleiotropic effects of Mpdz on vulnerability to seizures

GENES, BRAIN AND BEHAVIOR, Issue 1 2004
C. Fehr
We previously mapped quantitative trait loci (QTL) responsible for approximately 26% of the genetic variance in acute alcohol and barbiturate (i.e., pentobarbital) withdrawal convulsion liability to a <,1 cM (1.8 Mb) interval of mouse chromosome 4. To date, Mpdz, which encodes the multiple PSD95/DLG/ZO-1 (PDZ) domain protein (MPDZ), is the only gene within the interval shown to have allelic variants that differ in coding sequence and/or expression, making it a strong candidate gene for the QTL. Previous work indicates that Mpdz haplotypes in standard mouse strains encode distinct protein variants (MPDZ1-3), and that MPDZ status is genetically correlated with severity of withdrawal from alcohol and pentobarbital. Here, we report that MPDZ status cosegregates with withdrawal convulsion severity in lines of mice selectively bred for phenotypic differences in severity of acute withdrawal from alcohol [i.e., High Alcohol Withdrawal (HAW) and Low Alcohol Withdrawal (LAW) lines] or pentobarbital [High Pentobarbital Withdrawal (HPW) and Low Pentobarbital Withdrawal (LPW) lines]. These analyses confirm that MPDZ status is associated with severity of alcohol and pentobarbital withdrawal convulsions. Using a panel of standard inbred strains of mice, we assessed the association between MPDZ status with seizures induced by nine chemiconvulsants. Our results show that MPDZ status is genetically correlated with seizure sensitivity to pentylenetetrazol, kainate and other chemiconvulsants. Our results provide evidence that Mpdz may have pleiotropic effects on multiple seizure phenotypes, including seizures associated with withdrawal from two classes of central nervous system (CNS) depressants and sensitivity to specific chemiconvulsants that affect glutaminergic and GABAergic neurotransmission. [source]


Developmental phenotypes and reduced Wnt signaling in mice deficient for pygopus 2

GENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 5 2007
Boan Li
Abstract Canonical Wnt signaling involves complex intracellular events culminating in the stabilization of ,-catenin, which enters the nucleus and binds to LEF/TCF transcription factors to stimulate gene expression. Pygopus was identified as a genetic modifier of Wg (Wnt homolog) signaling in Drosophila, and encodes a PHD domain protein that associates with the ,-catenin/LEF/TCF complex. Two murine pygopus paralogs, mpygo1 and mpygo2, have been identified, but their roles in development and Wnt signaling remain elusive. In this study, we report that ablation of mpygo2 expression in mice causes defects in morphogenesis of both ectodermally and endodermally derived tissues, including brain, eyes, hair follicles, and lung. However, no gross abnormality was observed in embryonic intestine. Using a BAT-gal reporter, we found Wnt signaling at most body sites to be reduced in the absence of mpygo2. Taken together, our studies show for the first time that mpygo2 deletion affects embryonic development of some but not all Wnt-requiring tissues. genesis 45:318,325, 2007. © 2007 Wiley-Liss, Inc. [source]


A Toolbox of GFP Technologies

IMAGING & MICROSCOPY (ELECTRONIC), Issue 4 2006
Expression, Monitoring Protein Folding, Solubility
The green fluorescent protein (GFP) from the jelly-fish Aequorea victoria is a single domain protein of 238 amino acids. The protein becomes highly fluorescent after it folds into its 3-dimensional structure and a post-translational autocatalytic cyclisation/dehydration of the tripeptide segment - S65-Y66-G67- occurs and creates a fluorophore. [source]


Ala394Thr polymorphism in the clock gene NPAS2: A circadian modifier for the risk of non-Hodgkin's lymphoma

INTERNATIONAL JOURNAL OF CANCER, Issue 2 2007
Yong Zhu
Abstract Circadian disruption is theorized to cause immune dysregulation, which is the only established risk factor for non-Hodgkin's lymphoma (NHL). Genes responsible for circadian rhythm are also involved in cancer-related biological pathways as potential tumor suppressors. However, no previous studies have examined associations between circadian genes and NHL risk. In this population-based case control study (n = 455 cases; 527 controls), we examined the only identified nonsynonymous polymorphism (Ala394Thr; rs2305160) in the largest circadian gene, neuronal PAS domain protein 2 (NPAS2), in order to examine its impact on NHL risk. Our results demonstrate a robust association of the variant Thr genotypes (Ala/Thr and Thr/Thr) with reduced risk of NHL (OR = 0.66, 95% CI: 0.51,0.85, p = 0.001), especially B-cell lymphoma (OR = 0.61, 95% CI: 0.47,0.80, p ,, 0.0001). These findings provide the first molecular epidemiologic evidence supporting a role of circadian genes in lymphomagenesis, which suggests that genetic variations in circadian genes might be a novel panel of promising biomarkers for NHL and warrants further investigation. © 2006 Wiley-Liss, Inc. [source]


Proteomics analysis of liver samples from puffer fish Takifugu rubripes exposed to excessive fluoride: An insight into molecular response to fluorosis

JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 1 2010
Jian Lu
Abstract Comparative proteomics was performed to identify proteins in the liver of Takifugu rubripes in response to excessive fluoride exposure. Sixteen fish were randomly divided into a control group and an experimental group. The control group was raised in soft water alone (F, = 0.4 mg/L), and the experimental group was raised in the same water with sodium fluoride at a high concentration of 35 mg/L. After 3 days, proteins were extracted from the fish livers and then subjected to two-dimensional polyacrylamide gel electrophoresis analysis. The matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was applied to identify the proteins that were differentially expressed from the two groups of fish. Among an average of 816 and 918 proteins detected in the control and treated groups, respectively, 16 proteins were upregulated and 35 were downregulated (P < 0.01) in the fluoride-treated group as compared with those in the control group. Twenty-four highly differentially expressed proteins were further analyzed by MALDI-TOF/TOF-MS, and eight were identified by Mascot. These eight proteins include disulfide isomerase ER-60, 4SNc-Tudor domain protein, SMC3 protein, Cyclin D1, and mitogen-activated protein kinase 10, as well as three unknown proteins. Consistent with their previously known functions, these identified proteins seem to be involved in apoptosis and other functions associated with fluorosis. These results will greatly contribute to our understanding of the effects of fluoride exposure on the physiological and biochemical functions of Takifugu and the toxicological mechanism of fluoride causing fluorosis in both fish and human. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:21,28, 2010; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20308 [source]


Characterization of tissue-specific LIM domain protein (FHL1C) which is an alternatively spliced isoform of a human LIM-only protein (FHL1)

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2001
Enders Kai On Ng
Abstract We have cloned and characterized another alternatively spliced isoform of the human four-and-a-half LIM domain protein 1 (FHL1), designated FHL1C. FHL1C contains a single zinc finger and two tandem repeats of LIM domains at the N-terminus followed by a putative RBP-J binding region at the C-terminus. FHL1C shares the same N-terminal two-and-a-half LIM domains with FHL1 but different C-terminal protein sequences. Due to the absence of the exon 4 in FHL1C, there is a frame-shift in the 3, coding region. Sequence analysis indicated that FHL1C is the human homolog of murine KyoT2. The Northern blot and RT-PCR results revealed that FHL1 is widely expressed in human tissues, including skeletal muscle and heart at a high level, albeit as a relatively low abundance transcript in brain, placenta, lung, liver, kidney, pancreas, and testis. In contrast, FHL1C is specifically expressed in testis, skeletal muscle, and heart at a relatively low level compared with FHL1. The expression of FHL1C transcripts was also seen in aorta, left atrium, left, and right ventricles of human heart at low level. Immunoblot analysis using affinity-purified anti-FHL1C antipeptide antibodies confirmed a 20 kDa protein of FHL1C in human skeletal muscle and heart. Unlike FHL1B, which is another FHL1 isoform recently reported by our group and localized predominantly in the nucleus [Lee et al., 1999], FHL1C is localized both in the nucleus and cytoplasm of mammalian cell. J. Cell. Biochem. 82: 1,10, 2001. © 2001 Wiley-Liss, Inc. [source]


Ancient conserved domain protein-1 binds copper and modifies its retention in cells

JOURNAL OF NEUROCHEMISTRY, Issue 1 2007
Alexandra Alderton
Abstract The ancient conserved domain protein (ACDP) family are a recently identified group of homologous mammalian proteins. Some family members have been suggested to have roles in the metabolism of metals. We investigated the capacity of ACDP-1 to bind metals. Using immobilised metal affinity chromatography and isothermal titration calorimetry we determined that ACDP-1 is a high affinity copper binding protein able to bind copper at nanomolar concentrations. In addition the promoter of ACDP-1 contains metal response elements and the cellular expression of ACDP-1 alters cellular retention of copper. However, cellular expression of ACDP-1 does not alter cellular resistance to the toxicity of copper or other metals. As our findings place the subcellular localisation of ACDP-1 in the cytoplasm it is possible that ACDP-1 represent a novel copper chaperone or storage protein. [source]


Regulatory machinery of UNC-33 Ce-CRMP localization in neurites during neuronal development in Caenorhabditis elegans

JOURNAL OF NEUROCHEMISTRY, Issue 6 2005
Daisuke Tsuboi
Abstract In Caenorhabditis elegans, unc-33 encodes an orthologue of the vertebrate collapsin response mediator protein (CRMP) family. We previously reported that CRMP-2 accumulated in the distal part of the growing axon of vertebrate neurons and played critical roles in axon elongation. unc-33 mutants show axonal outgrowth defects in several neurons. It has been reported that UNC-33 accumulates in neurites, whereas a missense mutation causes the mislocalization of UNC-33 from neurites to cell body, which suggests that the localization of UNC-33 in neurites is important for axonal outgrowth. However, it is unclear how UNC-33 accumulates in neurites and regulates neuronal development. In this study, to understand the regulatory mechanisms of localization of UNC-33 in neurites, we screened for the mutants that were involved in the localization of UNC-33, and identified three mutants: unc-14 (RUN domain protein), unc-51 (ULK kinase) and unc-116 (kinesin heavy chain). UNC-14 is known to associate with UNC-51. UNC-116 forms a complex with KLC-2 as Kinesin-1, a microtubule-dependent motor complex. We found that UNC-33 interacted with UNC-14 and KLC-2 in vivo. These results suggest that the UNC-14/UNC-51 complex and Kinesin-1 are involved in the localization of UNC-33 in neurites. [source]


Reversal of cancer multidrug resistance by green tea polyphenols

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 10 2004
Yuying Mei
The aim of this study was to examine the effect and mechanism of green tea polyphenols (TP) on reversal of multidrug resistance (MDR) in a carcinoma cell line. Using the MTT assay, TP was examined for its modulating effects on the drug-resistant KB-A-1 cells and drug-sensitive KB-3,1 cells. When 10 ,g mL,1 (-)-epigallocatechin gallate (EGCG) or 40 ,g mL,1 TP were present simultaneously with doxorubicin (DOX), the IC50 of DOX on KB-A-1 cells decreased from 10.3 ± 0.9 ,g mL,1 to 4.2 ± 0.2 and 2.0 ± 0.1 ,g mL,1, respectively. TP and EGCG enhanced the DOX cytotoxicity on KB-A-1 cells by 5.2-and 2.5-times, respectively, but did not show a modulating effect on KB-3,1 cells. This indicated that both TP and EGCG had reversal effects on the MDR phenotype in-vitro. A KB-A-1 cell xenograft model was established, and the effect of TP on reversing MDR in-vivo was determined. Mechanistic experiments were conducted to examine the uptake, efflux and accumulation of DOX. Cloning and expression of the nucleotide binding domain of the human MDR1 gene in Escherichia coli was established, and by using colorimetry to examine the activity of ATPase to hydrolyse ATP, the ATPase activity of target nucleotide binding domain protein was determined. TP exerted its reversal effects through the inhibition of ATPase activity, influencing the function of P-glycoprotein, and causing a decreased extrusion of anticancer drug and an increased accumulation of anticancer drug in drug resistant cells. Using reverse transcription-polymerase chain reaction, the inhibitory effect of TP on MDR1 gene expression was investigated. Down-regulation of MDR1 gene expression was the main effect, which resulted in the reversal effect of TP on the MDR phenotype. TP is a potent MDR modulator with potential in the treatment of P-glycoprotein mediated MDR cancers. [source]


Recent progress on the molecular organization of myelinated axons

JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 1 2002
Steven S. Scherer
Abstract The structure of myelinated axons was well described 100 years ago by Ramón y Cajal, and now their molecular organization is being revealed. The basal lamina of myelinating Schwann cells contains laminin-2, and their abaxonal/outer membrane contains two laminin-2 receptors, ,6,4 integrin and dystroglycan. Dystroglycan binds utrophin, a short dystrophin isoform (Dp116), and dystroglycan-related protein 2 (DRP2), all of which are part of a macromolecular complex. Utrophin is linked to the actin cytoskeleton, and DRP2 binds to periaxin, a PDZ domain protein associated with the cell membrane. Non-compact myelin,found at incisures and paranodes,contains adherens junctions, tight junctions, and gap junctions. Nodal microvilli contain F-actin, ERM proteins, and cell adhesion molecules that may govern the clustering of voltage-gated Na+ channels in the nodal axolemma. Nav1.6 is the predominant voltage-gated Na+ channel in mature nerves, and is linked to the spectrin cytoskeleton by ankyrinG. The paranodal glial loops contain neurofascin 155, which likely interacts with heterodimers composed of contactin and Caspr/paranodin to form septate-like junctions. The juxtaparanodal axonal membrane contains the potassium channels Kv1.1 and Kv1.2, their associated ,2 subunit, as well as Caspr2. Kv1.1, Kv1.2, and Caspr2 all have PDZ binding sites and likely interact with the same PDZ binding protein. Like Caspr, Caspr2 has a band 4.1 binding domain, and both Caspr and Caspr2 probably bind to the band 4.1B isoform that is specifically found associated with the paranodal and juxtaparanodal axolemma. When the paranode is disrupted by mutations (in cgt -, contactin -, and Caspr -null mice), the localization of these paranodal and juxtaparanodal proteins is altered: Kv1.1, Kv1.2, and Caspr2 are juxtaposed to the nodal axolemma, and this reorganization is associated with altered conduction of myelinated fibers. Understanding how axon-Schwann interactions create the molecular architecture of myelinated axons is fundamental and almost certainly involved in the pathogenesis of peripheral neuropathies. [source]


Progressive up-regulation of genes encoding DNA methyltransferases in the colorectal adenoma-carcinoma sequence

MOLECULAR CARCINOGENESIS, Issue 9 2007
Wolfgang M. Schmidt
Abstract Epigenetic silencing is a prominent feature of cancer. Here, we investigated the expression of DNA demethylase and three DNA methyltransferases during colorectal tumorigenesis comparing the genes encoding DNA methyltransferases 1 (DNMT1), 3A, and 3B (DNMT3A and DNMT3B) with methyl-CpG binding domain protein 2 (MBD2), recently described as the only active DNA demethylase. Total RNA isolated from normal colonic mucosa (n,=,24), benign adenomas (n,=,18), and malignant colorectal carcinomas (n,=,32) was analyzed by reverse transcriptase-PCR with subsequent quantification by capillary gel electrophoresis. In contrast to MBD2, expression of DNMT1 and DNMT3A increased in parallel to the degree of dysplasia, with significant overexpression in the malignant lesion when compared with mucosa or with benign lesions (DNMT1). Pairwise comparisons between tumors and matched, adjacent healthy mucosa tissue (n,=,13) revealed that expression of all three genes encoding DNA methyltransferases increased by two- to three-fold. Our data suggest a relevant role of the DNA methyltransferases during colorectal tumorigenesis. This increase is not counterbalanced by enhanced expression of the demethylating component MBD2. As a consequence, epigenetic regulation in the adenoma-carcinoma sequence may be driven by increased methylating activity rather than suppressed demethylation. © 2007 Wiley-Liss, Inc. [source]


A glutamate-alanine-leucine (EAL) domain protein of Salmonella controls bacterial survival in mice, antioxidant defence and killing of macrophages: role of cyclic diGMP

MOLECULAR MICROBIOLOGY, Issue 5 2005
Katherine B. Hisert
Summary Signature-tagged transposon mutagenesis of Salmonella with differential recovery from wild-type and immunodeficient mice revealed that the gene here named cdgR[for c-diguanylate (c-diGMP) regulator] is required for the bacterium to resist host phagocyte oxidase in vivo. CdgR consists solely of a glutamate-alanine-leucine (EAL) domain, a predicted cyclic diGMP (c-diGMP) phosphodiesterase. Disruption of cdgR decreased bacterial resistance to hydrogen peroxide and accelerated bacterial killing of macrophages. An ultrasensitive assay revealed c-diGMP in wild-type Salmonella with increased levels in the CdgR-deficient mutant. Thus, besides its known role in regulating cellulose synthesis and biofilm formation, bacterial c-diGMP also regulates host,pathogen interactions involving antioxidant defence and cytotoxicity. [source]


A novel upstream regulator of WRKY53 transcription during leaf senescence in Arabidopsis thaliana

PLANT BIOLOGY, Issue 2008
Y. Miao
Abstract Arabidopsis WRKY proteins comprise a family of zinc finger-type transcription factors involved in the regulation of gene expression during pathogen defence, wounding, trichome development and senescence. To better understand the regulatory role of the senescence-related WRKY53 factor, we identified upstream regulatory factors using the yeast one-hybrid system. Among others, we identified a DNA-binding protein with a so far unknown function that contains a transcriptional activation domain and a kinase domain with similarities to HPT kinases. In vitro studies revealed that this activation domain protein (AD protein) can phosphorylate itself and that phosphorylation increases its DNA-binding activity to the WRKY53 promoter region. Using the yeast two-hybrid system, an interaction with proteins that were previously shown to bind to the WRKY53 promoter was tested. The AD protein interacted with MEKK1. The interaction with MEKK1 was confirmed in vivo by bimolecular fluorescence complementation (BiFC); however, the AD protein was not phosphorylated by MEKK1 in vitro and vice versa. This indicates that there may be competition between WRKY53 and AD protein for binding of MEKK1 at the WRKY53 promoter. Overexpression and knockout of the respective gene resulted in changes in transcription levels of WRKY53, indicating that AD protein is a positive regulator of WRKY53 expression. Expression of the AD protein gene can be induced by hydrogen peroxide treatment and reduced by jasmonic acid treatment, as previously shown for WRKY53. [source]


Proteomic analysis of rice plasma membrane reveals proteins involved in early defense response to bacterial blight

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 9 2007
Fang Chen
Abstract Plant plasma membrane (PM) proteins play important roles in signal transduction during defense response to an attacking pathogen. By using an improved method of PM protein preparation and PM-bound green fluorescent protein fusion protein as a visible marker, we conducted PM proteomic analysis of the rice suspension cells expressing the disease resistance gene Xa21, to identify PM components involved in the early defense response to bacterial blight (Xanthomonas oryzae pv. oryzae). A total of 20 regulated protein spots were observed on 2-D gels of PM fractions at 12 and 24,h after pathogen inoculation, of which some were differentially regulated between the incompatible and compatible interactions mediated by Xa21, with good correlation between biological repeats. Eleven protein spots with predicted functions in plant defense were identified by MS/MS, including nine putative PM-associated proteins H+ -ATPase, protein phosphatase, hypersensitive-induced response protein (OsHIR1), prohibitin (OsPHB2), zinc finger and C2 domain protein, universal stress protein (USP), and heat shock protein. OsHIR1 was modified by the microbal challenge, leading to two differentially accumulated protein spots. Transcript analysis showed that most of the genes were also regulated at transcriptional levels. Our study would provide a starting point for functionality of PM proteins in the rice defense. [source]


Nuclear accumulation of the ankyrin repeat protein ANK1 enhances the auxin-mediated transcription accomplished by the bZIP transcription factors BZI-1 and BZI-2

THE PLANT JOURNAL, Issue 6 2009
Stefan Böttner
Summary The tobacco (Nicotiana tabacum) basic leucine zipper (bZIP) transcription factor BZI-1 has been implicated in auxin-mediated gene regulation. Yeast two-hybrid analysis has led to the identification of two BZI-1 protein interaction partners: the heterodimerizing bZIP factor BZI-2 and an ankyrin repeat domain protein, ANK1. Analysis in transgenic plants confirms that low levels of functional BZI-1, BZI-2 and ANK1 result in reduced auxin responses. This finding indicates that the three proteins act in the same functional context. The in vivo interaction of ANK1 and BZI-1 has been confirmed by protoplast two-hybrid analysis, as well as by bimolecular fluorescence complementation (BiFC) studies. Whereas YFP-BZI-1 has been found to be localized in the nucleus, YFP-ANK1 resides in the cytosol. Nevertheless, the inhibition of nuclear export with the inhibitor leptomycin B (LMB) and the co-expression with BZI-1, as well as treatment with auxin, results in the accumulation of YFP-ANK1 in the nucleus. Whereas BZI-1 is a weak activator, BZI-1/BZI-2 heterodimers efficiently support transcription. Importantly, conditions that lead to the accumulation of ANK1 in the nucleus, such as the expression of an ANK1 protein fused to a nuclear localization sequence (NLS) or auxin treatment, lead to a significant enhancement of BZI-1/BZI-2-mediated transcription. We therefore propose a mechanism in which the nuclear accumulation of ANK1 enhances BZI-1/BZI-2-mediated transcription in an auxin-dependent manner, presumably facilitated by protein,protein interaction. In summary, this study defines novel components in auxin-dependent signalling and transcriptional control. [source]


The maize (Zea mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and post-embryonic shoot-borne root initiation

THE PLANT JOURNAL, Issue 4 2007
Graziana Taramino
Summary Maize has a complex root system composed of different root types formed during different stages of development. The rtcs (rootless concerning crown and seminal roots) mutant is impaired in the initiation of the embryonic seminal roots and the post-embryonic shoot-borne root system. The primary root of the mutant shows a reduced gravitropic response, while its elongation, lateral root density and reaction to exogenously applied auxin is not affected. We report here the map-based cloning of the RTCS gene which encodes a 25.5 kDa LOB domain protein located on chromosome 1S. The RTCS gene has been duplicated during evolution. The RTCS-LIKE (RTCL) gene displays 72% sequence identity on the protein level. Both genes are preferentially expressed in roots. Expression of RTCS in coleoptilar nodes is confined to emerging shoot-borne root primordia. Sequence analyses of the RTCS and RTCL upstream genomic regions identified auxin response elements. Reverse transcriptase-PCR revealed that both genes are auxin induced. Microsynteny analyses between maize and rice genomes revealed co-linearity of 14 genes in the RTCS region. We conclude from our data that RTCS and RTCL are auxin-responsive genes involved in the early events that lead to the initiation and maintenance of seminal and shoot-borne root primordia formation. [source]


research paper: Role of the cold shock domain protein A in the transcriptional regulation of HBG expression

BRITISH JOURNAL OF HAEMATOLOGY, Issue 6 2010
Raffaella Petruzzelli
Summary Impaired switching from fetal haemoglobin (HbF) to adult globin gene expression leads to hereditary persistence of fetal haemoglobin (HPFH) in adult life. This is of prime interest because elevated HbF levels ameliorate ,-thalassaemia and sickle cell anaemia. Fetal haemoglobin levels are regulated by complex mechanisms involving factors linked or not to the ,-globin gene (HBB) locus. To search for factors putatively involved in the expression of the ,-globin genes (HBG1, HBG2), we examined the reticulocyte transcriptome of three siblings who had different HbF levels and different degrees of ,-thalassaemia severity although they had the same ,BA - and ,,B cluster genotypes. By mRNA differential display we isolated the cDNA coding for the cold shock domain protein A (CSDA), also known as dbpA, previously reported to interact in vitro with the HBG2 promoter. Expression studies performed in K562 and in primary erythroid cells showed an inverse relationship between HBG and CSDA expression levels. Functional studies performed by Chromatin Immunoprecipitation and reporter gene assays in K562 cells demonstrated that CSDA is able to bind the HBG2 promoter and suppress its expression. Therefore, our study demonstrated that CSDA is a trans-acting repressor factor of HBG expression and modulates the HPFH phenotype. [source]


Impairment of death-inducing signalling complex formation in CD95-resistant human primary lymphoma B cells

BRITISH JOURNAL OF HAEMATOLOGY, Issue 6 2004
Alicia Lajmanovich
Summary Multiple mechanisms exist by which tumour cells can escape CD95-mediated apoptosis. Previous studies by our laboratory have shown that primary B cells from non-Hodgkin's Lymphoma (B-NHL) were resistant to CD95-induced cell death. In the current study, we have analysed the mechanisms underlying CD95 resistance in primary human lymphoma B cells. We report that FADD (FAS-associated death domain protein) and caspase-8 were constitutively expressed in lymphoma B cells and that the CD95 pathway was blocked upstream to caspase-8 activation. However, caspase-8 was processed and functional after treatment with staurosporine (STS). We found that the expression levels of FLICE (FADD-like interleukin-1 beta-converting enzyme)-Inhibitory Protein (c-FLIP) and Bcl-2-related proteins were heterogeneous in B-NHL cells and were not related to CD95 resistance. Finally, we report the absence of a CD95-induced signalling complex [death-inducing signalling complex (DISC)] in lymphoma B cells, with no FADD and caspase-8 recruitment to CD95 receptor. In contrast, DISC formation was observed in CD95-resistant non-tumoural (NT) B cells. Therefore, we propose that the absence of DISC formation in primary lymphoma B cells may contribute to protect these cells from CD95-induced apoptosis. [source]


Chemical sensitization and regulation of TRAIL-induced apoptosis in a panel of B-lymphocytic leukaemia cell lines

BRITISH JOURNAL OF HAEMATOLOGY, Issue 5 2003
Jian Kang
Summary., Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) effectively kills tumour cells but not normal cells. We investigated TRAIL sensitivity and the TRAIL-induced apoptosis signalling pathway in a panel of B-lymphocytic leukaemia cell lines. Depending upon TRAIL sensitivity, leukaemia cells could be divided into three groups: highly sensitive, moderately sensitive and resistant. TRAIL receptor-2 (DR5) plays an important role in transducing apoptosis signals. DR5 was internalized into the cytoplasm where it recruited FAS-associated death domain protein (FADD) under TRAIL stimulation in both sensitive and resistant cells. However, the active form of caspase-8 was recruited to FADD and only sensitive cells showed increased caspase-8 activity upon TRAIL stimulation. The caspase-8 specific inhibitor, Z-IETD, impaired caspase-8 activation and completely abrogated TRAIL-induced apoptosis. These results suggest that TRAIL resistance in B-lymphocytic leukaemia cells is due to negative regulation at the level of caspase-8 activation and that caspase-8 activation is an indispensable process in TRAIL-induced apoptosis. However, FADD-like interleukin-1 ,-converting enzyme inhibitory protein (c-FLIPL) was similarly expressed and down-regulated after TRAIL stimulation in both sensitive and resistant cells. Interestingly, in some cell lines, TRAIL sensitivity and caspase-8 activity was enhanced or restored with the treatment of cycloheximide (CHX). In addition, X-linked inhibitor of apoptosis (XIAP) levels decreased significantly and rapidly following treatment with CHX. Down-regulation of XIAP may be responsible for enhancement or restoration of TRAIL sensitivity after CHX treatment in B-lymphocytic leukaemia cells. [source]


Regulatory mechanisms and functions of intermediate filaments: A study using site- and phosphorylation state-specific antibodies

CANCER SCIENCE, Issue 3 2006
Ichiro Izawa
Intermediate filaments (IF) form the structural framework of the cytoskeleton. Although histopathological detection of IF proteins is utilized for examining cancer specimens as reliable markers, the molecular mechanisms by which IF are involved in the biology of cancer cells are still unclear. We found that site-specific phosphorylation of IF proteins induces the disassembly of filament structures. To further dissect the in vivo spatiotemporal dynamics of IF phosphorylation, we developed site- and phosphorylation state-specific antibodies. Using these antibodies, we detected kinase activities that specifically phosphorylate type III IF, including vimentin, glial fibrillary acidic protein and desmin, during mitosis. Cdk1 phosphorylates vimentin-Ser55 from prometaphase to metaphase, leading to the recruitment of Polo-like kinase 1 (Plk1) to vimentin. Upon binding to Phospho-Ser55 of vimentin, Plk1 is activated, and then phosphorylates vimentin-Ser82. During cytokinesis, Rho-kinase and Aurora-B specifically phosphorylate IF at the cleavage furrow. IF phosphorylation by Cdk1, Plk1, Rho-kinase and Aurora-B plays an important role in the local IF breakdown, and is essential for the efficient segregation of IF networks into daughter cells. As another part of our research on IF, we have set out to find the binding partners with simple epithelial keratin 8/18. We identified tumor necrosis factor receptor type 1-associated death domain protein (TRADD) as a keratin 18-binding protein. Together with data from other laboratories, it is proposed that simple epithelial keratins may play a role in modulating the response to some apoptotic signals. Elucidation of the precise molecular functions of IF is expected to improve our understanding of tumor development, invasion and metastasis. (Cancer Sci 2006; 97: 167,174) [source]


How Do Halogen Substituents Contribute to Protein-Binding Interactions?

CHEMBIOCHEM, Issue 17 2008
A Thermodynamic Study of Peptide Ligands with Diverse Aryl Halides
Hallowed halogens: Ligands with fluorine, chlorine, bromine and iodine can often display enhanced binding affinity for their biomolecular receptors. The underlying thermodynamic driving forces, however, have rarely been studied. Using calorimetry and a series of aryl halide-containing peptides that bind a PDZ domain protein, we examined how binding free energy, enthalpy and entropy are perturbed when the position and identity of halogen substituents are varied. [source]


Utilization of a Common Pathway for the Synthesis of High Affinity Macrocyclic Grb2 SH2 Domain-Binding Peptide Mimetics That Differ in the Configuration at One Ring Junction

CHEMISTRY & BIODIVERSITY, Issue 4 2005
Zhen-Dan Shi
As typified by 2-{(9S,10S,14R,18S)-18-(2-amino-2-oxoethyl)-14-[(5-methyl-1H -indol-1-yl)methyl]-8,17,20-trioxo-10-[4-(phosphonomethyl)phenyl]-7,16,19-triazaspiro[5.14]icos-11-en-9-yl}acetic acid ((14R)- 1b), ring-closing methathesis-derived macrocyclic tetrapeptide mimetics have recently been reported that bind with high affinity to Grb2 SH2 domains in both extracellular and whole-cell assays. The synthetic complexity of this class of agents limits further therapeutic development. Although a significant component of this synthetic complexity arises from the presence of three stereogenic centers, C(9) (S), C(10) (S), and C(14) (R), it is unclear whether stereoselective introduction of defined configuration at C(14) is required for high-affinity binding. Reported herein is a synthetic route to these macrocycles lacking stereoselectivity in the formation of the C(14) ring junction, which is four synthetic steps shorter than the original stereoselective synthesis. Separation of C(14)-epimers obtained by this approach was achieved by preparative HPLC. Molecular-dynamics studies of ligands bound to the Grb2 SH2 domain protein indicated that the (14R)-configuration should display more-favorable interactions with the protein relative to the (14S)-epimer. Indeed, although surface-plasmon-resonance-derived binding constants to Grb2 SH2 domain protein indicated that the affinity of the (14R)-epimer (KD=4.8,nM) is greater than that of the (14S)-epimer (KD=11,nM), it is only marginally so. Therefore, little affinity would be lost through a non-stereoselective synthesis of the C(14)-center. Further studies are in progress to explore reduced structural complexity at the C(14)-center. [source]


Maternal expression and function of the Drosophila sox gene Dichaete during oogenesis

DEVELOPMENTAL DYNAMICS, Issue 10 2006
Ashim Mukherjee
Abstract Members of the Sox family of DNA-binding HMG domain proteins have been shown to regulate gene transcription in a wide range of developmental processes, including sex determination, neurogenesis, and chondrogenesis. However, little is known about their potential functions in developing germline tissues. In Drosophila, the Sox protein Dichaete (a.k.a., Fish-hook) is a member of the SoxB subgroup whose HMG domain shares strong sequence similarity to that of vertebrate Sox2. Dichaete exhibits dynamic expression in embryonic and larval stages and has pleiotropic functions in a variety of tissues. In this study, we extend analyses of Dichaete function and show that expression of Dichaete protein is detected in the developing oocyte during early to mid stages of oogenesis. Strikingly, Dichaete exhibits cytoplasmic distribution and is not detected in the oocyte nucleus. Germline mosaic analyses revealed that the Dichaete gene has maternal functions that influence dorsal/ventral patterning of the egg chamber. Dichaete mutant eggs exhibit defects in formation of the dorsal appendages, differentiation of dorsal/anterior follicle cells, and mislocalization of Gurken protein and gurken mRNA. Dichaete protein was shown to possess RNA-binding capabilities, suggesting a direct post-transcriptional role in regulating RNA functions. Developmental Dynamics 235:2828,2835, 2006. © 2006 Wiley-Liss, Inc. [source]