Home About us Contact | |||
Domain Optical Coherence Tomography (domain + optical_coherence_tomography)
Kinds of Domain Optical Coherence Tomography Selected AbstractsChorioretinal anastomosis in adaptive optic and high definition spectral domain optical coherence tomographyACTA OPHTHALMOLOGICA, Issue 2009C MAILLON Purpose To assess morphologic variations in the outer and inner retinal layers in eyes with chorioretinal anatomosis using high definition Spectral Domain Optical Coherence Tomography (Spectralis HRA OCT, Heidelberg Engineering, Heidelberg, Germany) and to compare these scans with images acquired by Adaptive Optics (AO). Methods This was a prospective observational case series including 50 patients. SD-OCT scans were obtained with combined confocal scanning laser ophthalmoscope (cSLO) and SD-OCT for simultaneous tomographic and topographic in vivo imaging. Patients underwent fluorescein and ICG- angiography and Adaptive Optics assessment with Imagine EyesÔ System. The neurosensory retina and the photoreceptor layer were analyzed using both HR-OCT and AO imaging. Results Combining of the adaptive optics with SD-OCT may give us further information of the early stage development of chorioretinal anastomosis. [source] Segmentation of FD-OCT images shows selective loss of inner retinal layers in patients with DM and no or early DRACTA OPHTHALMOLOGICA, Issue 2009FD VERBRAAK Purpose Determine whether diabetes differentially affects specific retinal layers by comparing the thickness of six retinal layers in diabetic patients with no or minimal diabetic retinopathy (DR) to age- and gender-matched normal controls. Methods Forty-four patients with type 1 diabetes and no or minimal DR underwent full ophthalmic examination, stereoscopic fundus photographs and spectral domain optical coherence tomography (OCT). Following automated segmentation of intraretinal layers of the OCT images, mean thickness was calculated for 6 individual layers of the retina in the fovea, the pericentral area and the peripheral area of the central macula and compared to an age- and gender-matched control group. Results In type 1 diabetic patients with minimal DR, the retinal nerve fiber layer (p=0.00) and the ganglion cell/inner plexiform layer (p=0.02) were significantly thinner compared to age- and gender-matched controls. No other layers showed a significant difference. Conclusion Thinning of the total retina in diabetic patients with minimal DR relative to normal controls is due to a selective thinning of inner retinal layers and supports the concept that early DR includes a neuro-degenerative component. [source] High-definition Fourier domain OCT: non-invasive assessment of BRB changesACTA OPHTHALMOLOGICA, Issue 2009R BERNARDES Purpose To demonstrate the possibility of using a non-invasive imaging technique, the high-definition spectral domain optical coherence tomography, as a surrogate detector of blood-retinal barrier (BRB) breakdown. Methods Healthy volunteers and diabetic patients with diabetic retinopathy, age- related macular degeneration, choroidal neo-vascularisation and cystoid macular edema, underwent optical coherence tomography by Cirrus HD-OCT (Carl Zeiss Meditec, Dublin, CA, USA). Profiles of reflectivity distribution between the inner-limiting membrane and the retinal pigment epithelium were built, normalized, aligned and compared. Patients underwent retinal leakage analyzer (RLA) to identify areas of retinal fluorescein leakage into the vitreous as areas of blood-retinal barrier breakdown. Results The comparison between healthy volunteers' and patients' reflectivity distribution demonstrates these profiles differ. Moreover, when comparing reflectivity distribution within the same eye between areas of leakage and areas of non-leakage, the sum of the squared differences is over one decade relatively to the comparison between two similar areas (leakage/leakage or non-leakage/non-leakage). Conclusion These findings suggest that high-definition OCT may be useful in identifying areas of retinal leakage/BRB breakdown and therefore to be used as surrogate for fluorescein angiography and retinal leakage analyzer. [source] Clinical use and research applications of Heidelberg retinal angiography and spectral-domain optical coherence tomography , a reviewCLINICAL & EXPERIMENTAL OPHTHALMOLOGY, Issue 1 2009Andrea Hassenstein MD Abstract Fluorescein angiography (FA) was discovered by Nowotny and Alvis in the 1960s of the 20th century and has evolved to become the ,Gold standard' for macular diagnostics. Scanning laser imaging technology achieved enhancement of contrast and resolution. The combined Heidelberg retina angiograph (HRA2) adds novel innovative features to established fundus cameras. The principle of confocal scanning laser imaging provides a high resolution of retinal and choroidal vasculature with low light exposure providing comfort and safety for the patient. Enhanced contrast, details and image sharpness image are generated using confocality. For the visualization of the choroid an indocyanine green angiography (ICGA) is the most suitable application. The main indications for ICGA are age-related macular degeneration, choroidal polypoidal vasculopathy and choroidal haemangiomas. Simultaneous digital FA and ICGA images with three-dimensional resolution offer improved diagnosis of retinal and choroidal pathologies. High-speed ICGA dynamic imaging can identify feeder vessels and retinal choroidal anastomoses, ensuring safer treatment of choroidal neovascularization. Autofluorescence imaging and fundus reflectance imaging with blue and infrared light offer new follow-up parameters for retinal diseases. Finally, the real-time optical coherence tomography provides a new level of accuracy for assessment of the angiographic and morphological correlation. The combination of various macular diagnostic tools, such as infrared, blue reflectance, fundus autofluorescence, FA, ICGA and also spectral domain optical coherence tomography, lead to a better understanding and improved knowledge of macular diseases. [source] |