Home About us Contact | |||
Domain Alone (domain + alone)
Selected AbstractsA tripartite motif protein TRIM11 binds and destabilizes Humanin, a neuroprotective peptide against Alzheimer's disease-relevant insultsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2003Takako Niikura Abstract Humanin (HN) is a newly identified neuroprotective peptide that specifically suppresses Alzheimer's disease (AD)-related neurotoxicity. HN peptide has been detected in the human AD brain as well as in mouse testis and colon by immunoblot and immunohistochemical analyses. By means of yeast two-hybrid screening, we identified TRIM11 as a novel HN-interacting protein. TRIM11, which is a member of protein family containing a tripartite motif (TRIM), is composed of a RING finger domain, which is a putative E3 ubiquitin ligase, a B-box domain, a coiled-coil domain and a B30.2 domain. Deletion of the B30.2 domain in TRIM11 abolished the interaction with HN, whereas the B30.2 domain alone did not interact with HN. For their interaction, at least the coiled-coil domain was indispensable together with the B30.2 domain. The intracellular level of glutathione S -transferase-fused or EGFP-fused HN peptides or plain HN was drastically reduced by the coexpression of TRIM11. Disruption of the RING finger domain by deleting the first consensus cysteine or proteasome inhibitor treatment significantly diminished the effect of TRIM11 on the intracellular level of HN. These results suggest that TRIM11 plays a role in the regulation of intracellular HN level through ubiquitin-mediated protein degradation pathways. [source] Evolution of astacin-like metalloproteases in animals and their function in developmentEVOLUTION AND DEVELOPMENT, Issue 2 2006Frank Möhrlen SUMMARY Astacin-like metalloproteases are ubiquitous in the animal kingdom but their phylogenetic relationships and ancient functions within the Metazoa are unclear. We have cloned and characterized four astacin-like cDNAs from the marine hydroid Hydractinia echinata and performed a database search for related genes in the draft genome sequence of the sea anemone Nematostella vectensis. These sequences and those of higher animals' astacins were subjected to phylogenetic analysis revealing five clusters within the Eumetazoa. The bone morphogenetic protein-1/tolloid-like astacins were represented in all eumetazoan phyla studied. The meprins were only found in vertebrates and cnidarians. Two clusters were taxon-specific, and one cluster represented astacins, which probably evolved after the split of the Cnidaria. Interestingly, grouping of astacins according to the protease catalytic domain alone resulted in clusters of proteins with similar overall domain architecture. The Hydractinia astacins were expressed in distinct cells during metamorphosis and some also during wound healing. Previously characterized cnidarian astacins also act during development. Based on our phylogeny, however, we propose that the developmental function of most of them is not homologous to the developmental function assigned to higher animals' astacins. [source] Spectroscopic and DNA-binding characterization of the isolated heme-bound basic helix,loop,helix-PAS-A domain of neuronal PAS protein 2 (NPAS2), a transcription activator protein associated with circadian rhythmsFEBS JOURNAL, Issue 11 2006Yuji Mukaiyama Neuronal PAS domain protein 2 (NPAS2) is a circadian rhythm-associated transcription factor with two heme-binding sites on two PAS domains. In the present study, we compared the optical absorption spectra, resonance Raman spectra, heme-binding kinetics and DNA-binding characteristics of the isolated fragment containing the N-terminal basic helix,loop,helix (bHLH) of the first PAS (PAS-A) domain of NPAS2 with those of the PAS-A domain alone. We found that the heme-bound bHLH-PAS-A domain mainly exists as a dimer in solution. The Soret absorption peak of the Fe(III) complex for bHLH-PAS-A (421 nm) was located at a wavelength 9 nm higher than for isolated PAS-A (412 nm). The axial ligand trans to CO in bHLH-PAS-A appears to be His, based on the resonance Raman spectra. In addition, the rate constant for heme association with apo-bHLH-PAS (3.3 × 107 mol,1·s,1) was more than two orders of magnitude higher than for association with apo-PAS-A (< 105 mol,1·s,1). These results suggest that the bHLH domain assists in stable heme binding to NPAS2. Both optical and resonance Raman spectra indicated that the Fe(II),NO heme complex is five-coordinated. Using the quartz-crystal microbalance method, we found that the bHLH-PAS-A domain binds specifically to the E-box DNA sequence in the presence, but not in the absence, of heme. On the basis of these results, we discuss the mode of heme binding by bHLH-PAS-A and its potential role in regulating DNA binding. [source] Function in Escherichia coli of the non-catalytic part of RNase E: role in the degradation of ribosome-free mRNAMOLECULAR MICROBIOLOGY, Issue 5 2002Anne Leroy Summary RNase E contains a large non-catalytic region that binds RNA and the protein components of the Escherichia coli RNA degradosome. The rne gene was replaced with alleles encoding deletions in the non-catalytic part of RNase E. All the proteins are stable in vivo. RNase E activity was tested using a PT7,lacZ reporter gene, the message of which is particularly sensitive to degradation because translation is uncoupled from transcription. The non-catalytic region has positive and negative effectors of mRNA degradation. Disrupting RhlB and enolase binding resulted in hypoactivity, whereas disrupting PNPase binding resulted in hyperactivity. Expression of the mutant proteins in vivo anticorrelates with activity showing that autoregulation compensates for defective function. There is no simple correlation between RNA binding and activity in vivo. An allele (rne131), expressing the catalytic domain alone, was put under Plac control. In contrast to rne+, low expression of rne131 severely affects growth. Even with autoregulation, all the mutants are less fit when grown in competition with wild type. Although the catalytic domain of RNase E is sufficient for viability, our work demonstrates that elements in the non-catalytic part are necessary for normal activity in vivo. [source] Polymerization of the SAM domain of MAPKKK Ste11 from the budding yeast: Implications for efficient signaling through the MAPK cascadesPROTEIN SCIENCE, Issue 3 2005Surajit Bhattacharjya Abstract The sterile ,-motif (SAM) is a protein module ,70 residues long and mainly involved in the protein,protein interactions of cell signaling and transcriptional repression. The SAM domain of the yeast MAPKKK Ste11 has a well-folded dimeric structure in solution. Interestingly, the well-folded dimer of the Ste11 SAM undergoes a time-dependent self-assembly upon lowering of the pH, leading to the formation of high molecular weight oligomers. The oligomeric structures rapidly disassemble to the well-folded dimer upon reversal of the pH to close to neutral conditions. Circular dichroism (CD) and atomic force microscopy (AFM) experiments demonstrate that the oligomeric structure formed at pH 5.0 appears to be highly helical and has architecture akin to proto-fibrils. Residue-specific kinetics of pH-triggered oligomerization obtained from real-time 15N- 1H HSQC experiments indicate that the dimer-oligomer transition appears to involve all residues of the well-folded dimeric structure of the Ste11 SAM. Very interestingly, the interactions of the Ste11 and Ste50 SAM domains also lead to the formation of non-homogeneous hetero-complexes with significant populations of high molecular weight aggregates. AFM imaging shows that the Ste11-Ste50 hetero-polymeric aggregates assume the shapes of circular nano-particles with dimensions of 50,60 nano-meters (nm), in contrast to the proto-fibrils formed by the Ste11 SAM domain alone. Such intrinsic propensity for dimer to oligomer transition of the Ste50-binding SAM domain of Ste11 may endow the MAPKKK Ste11 with unique functional properties required for efficient and high fidelity signal transduction in the budding yeast. [source] X-ray structure determination at low resolutionACTA CRYSTALLOGRAPHICA SECTION D, Issue 2 2009Axel T. Brunger As an example of structure determination in the 3.5,4.5,Å resolution range, crystal structures of the ATPase p97/VCP, consisting of an N-terminal domain followed by a tandem pair of ATPase domains (D1 and D2), are discussed. The structures were originally solved by molecular replacement with the high-resolution structure of the N-D1 fragment of p97/VCP, whereas the D2 domain was manually built using its homology to the D1 domain as a guide. The structure of the D2 domain alone was subsequently solved at 3,Å resolution. The refined model of D2 and the high-resolution structure of the N-D1 fragment were then used as starting models for re-refinement against the low-resolution diffraction data for full-length p97. The re-refined full-length models showed significant improvement in both secondary structure and R values. The free R values dropped by as much as 5% compared with the original structure refinements, indicating that refinement is meaningful at low resolution and that there is information in the diffraction data even at ,4,Å resolution that objectively assesses the quality of the model. It is concluded that de novo model building is problematic at low resolution and refinement should start from high-resolution crystal structures whenever possible. [source] scFv-based fluorogen activating proteins and variable domain inhibitors as fluorescent biosensor platformsBIOTECHNOLOGY JOURNAL, Issue 9 2009Crystal N. Falco Abstract Single chain antibodies (scFvs) are engineered proteins composed of IgG variable heavy (VH) and variable light (VL) domains tethered together by a flexible peptide linker. We have characterized the individual VH or VL domain activities of several scFvs isolated from a yeast surface-display library for their ability to bind environmentally sensitive fluorogenic dyes causing them to fluoresce. For many of the scFvs, both VH and VL domains are required for dye binding and fluorescence. The analysis of other scFvs, however, revealed that either the VH or the VL domain alone is sufficient to cause the fluorogenic dye activation. Furthermore, the inactive complementary domains in the original scFvs either contribute nothing to, or actually inhibit the activity of these active single domains. We have explored the interactions between active variable domains and inactive complementary domains by extensive variable domain swapping through in vitro gene manipulations to create hybrid scFvs. In this study, we demonstrate that significant alteration of the fluorogenic dye activation by the active VH or VL domains can occur by partnering with different VH or VL complementary domains in the scFv format. Hybrid scFvs can be generated that have fluorogen-activating domains that are completely inhibited by interactions with other domains. Such hybrid scFvs are excellent platforms for the development of several types of genetically encoded, fluorescence-generating biosensors. [source] Crystallization and preliminary X-ray diffraction studies on the catalytic domain of the chick retinal neurite-inhibitory factor CRYP-2ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 4 2005T. S. Girish The receptor protein tyrosine phosphatase CRYP-2 has been shown to be an inhibitory factor for the growth of retinal axons in the chick. The extracellular receptor domain of CRYP-2 contains eight fibronectin repeats and studies using the extracellular domain alone demonstrated the chemorepulsive effect on retinal neurons. The precise role of the intracellular catalytic domain and the mechanism by which its activity is regulated is not known. Determination of the structure of the catalytic domain of CRYP-2 was proposed in an effort to understand the downstream signal transduction mechanism in this system. The cloning, expression, purification and crystallization of the catalytic domain of CRYP-2 are now reported. Preliminary crystallographic studies were performed on the diamond-shaped crystals, which grew under oil using the microbatch method at 298,K. Native X-ray diffraction data were collected to 2.9,Å resolution on a home source. The crystals belong to the trigonal space group P3121, with unit-cell parameters a = b = 68.26, c = 244.95,Å. Assuming the presence of two molecules per asymmetric unit, the VM value was 2.7,Å3,Da,1 and the solvent content was 54.8%. [source] Effects of Poling Process on KNN-Modified Piezoceramic PropertiesJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 2 2010F. Rubio-Marcos The influence of the orthorhombic to tetragonal phase transition near room temperature in the poling process of KNN-modified piezoceramics was studied. Poling temperatures of 25° and 120°C were used. The percentage of 90° domains reorientation induced by poling was evaluated trough X-ray diffraction analysis. The improvement of the piezoelectric properties when the poling temperature was 25°C could not be explained by the reorientation of 90° domains alone. Raman spectroscopy evidenced that the polarization process was assisted by the stabilization of orthorhombic phase, which promotes a stress reduction in the material. [source] |