Dolomitic Limestone (dolomitic + limestone)

Distribution by Scientific Domains


Selected Abstracts


Conceptual models for burrow-related, selective dolomitization with textural and isotopic evidence from the Tyndall Stone, Canada

GEOBIOLOGY, Issue 1 2004
Murray K. Gingras
ABSTRACT The formation of dolomite is generally explained using models that reflect larger-scale processes that describe the relationship between the supply and transport of Mg, and geochemical conditions that are amenable to the formation of dolomite. However, heterogeneities in the substrate, such as those made by bioturbating infauna, may play a more important role in dolomitization than has been previously considered. Burrow-facilitated dolomitization is evident in the Ordovician Tyndall Stone (Red River Group, Selkirk Formation) of central Canada. The diagenetic fabrics present are attributed to dolomitizing fluids that both flowed through and evolved within burrow networks. Petrographic analysis suggests that two phases of dolomite formation took place. The first formed a fine-grained, fabric-destructive type that probably accompanied early burial; the second is a fine- to medium-grained, locally sucrosic dolomite that is interpreted to have precipitated during later burial. Isotopic analysis supports the proposed paragenetic history: (1) an apparent linking of the stable isotopes 13C and 18O strongly suggests that the micrite matrix formed during very early diagenesis and was derived from seawater; (2) the initial phase of dolomitization is potentially microbially mediated, as evidenced by the enrichment of 13C; and (3) isotopic values for the second generation of dolomite reflect the mixing of ground water and resorbed early dolomite. This paper conceptualizes the physical and chemical conditions required for the formation of dolomite in association with burrow fabrics. The proposed model reveals a composite of biological and inorganic reactions that demonstrates the interdependence of sediment fabric, organic content and microbial interactions in the development of burrow-mottled dolomitic limestone. It is suggested that where burrow-associated dolomite occurs, it is most likely to develop in two stages: first, the byproducts of the degradation of organic material in burrows locally increase the permeability and porosity around burrow fabrics in shallow diagenetic depositional environments; and, second, the passing of burrowed media into deeper dysaerobic sediment is accompanied by the establishment of fermenting micro-organisms whose byproducts mediate dolomitization. [source]


Fluorescence of Dissolved Organic Matter as a Natural Tracer of Ground Water

GROUND WATER, Issue 5 2001
Andy Baker
The fluorescence properties of dissolved organic matter (DOM) in ground water in the Permian limestone of northeast England is determined from six monitoring boreholes, a private water supply well and from a natural resurgence in a flooded collapse doline in the environs of Darlington, County Durham, northeast England. Measurements of both protein and "fulvic-like" fluorescence was undertaken from January to December 1999. The wavelengths of fulvic-like fluorescence excitation and emission and of protein fluorescence emission were all determined to be sensitive fingerprints of organic matter fluxes through the ground water, with water within the till and within both gypsum and limestone strata deep inside the Magnesian Limestone being differentiated by these parameters. Previous research has suggested that proteins in waters are "young" in age, hence our seasonal variations suggest that we are sampling recently formed DOM. The rapid response of all deep borehole samples suggests relatively rapid ground water flow, probably through karstic cave systems developed in the gypsum and solution widened features in the dolomitic limestone. Our results suggest that use of both protein and fulvic-like fluorescence wavelength variations provides a DOM signature that can be used as a natural tracer. [source]


Water quality and hydrogeochemical characteristics of the River Buyukmelen, Duzce, Turkey

HYDROLOGICAL PROCESSES, Issue 20 2005
Rustem Pehlivan
Abstract The River Buyukmelen is located in the province of Duzce in northwest Turkey and its water basin is approximately 470 km2. The Aksu, Kucukmelen and Ugursuyu streams flow into the River Buyukmelen. It flows into the Black Sea with an output of 44 m3 s,1. The geological succession in the basin comprises limestone and dolomitic limestone of the Y,lanl, formation, sandstone, clayey limestone and marls of the Akveren formation, clastics and volcano-clastics of the Caycuma formation, and cover units comprised of river alluvium, lacutrine sediments and beach sands. The River Buyukmelen is expected to be a water source that can supply the drinking water needs of Istanbul until 2040; therefore, it is imperative that its water quality be preserved. The samples of rock, soil, stream water, suspended, bed and stream sediments and beach sand were collected from the Buyukmelen river basin. They were examined using mineralogical and geochemical methods. The chemical constituents most commonly found in the stream waters are Na+, Mg2+, SO2,4, Cl, and HCO3, in the Guz stream water, Ca2+ in the Abaza stream water, and K+ in the Kuplu stream water. The concentrations of Na+, K+, Ca2+, Mg2+, SO2,4, HCO,3, Cl,, As, Pb, Ni, Mn, Cr, Zn, Fe and U in the Kuplu and Guz stream waters were much higher than the world average values. The Dilaver, Gubi, Tepekoy, Maden, Celik and Abaza streams interact with sedimentary rocks, and the Kuplu and Guz streams interact with volcanic rocks. The amount of suspended sediment in the River Buyukmelen in December 2002 was 120 mg l,1. The suspended and bed sediments in the muddy stream waters are formed of quartz, calcite, plagioclase, clay (kaolinite, illite and smectite), muscovite and amphibole minerals. As, Co, Cd, Cr, Pb, Ni, Zn and U have all accumulated in the Buyukmelen river-bed sediments. The muddy feature of the waters is related to the petrographic features of the rocks in the basin and their mineralogical compositions, as most of the sandstones and volcanic rocks (basalt, tuffite and agglomerate) are decomposed to a clay-rich composition at the surface. Thus, the suspended sediment in stream waters increases by physical weathering of the rocks and water,rock interaction. Owing to the growing population and industrialization, water demand is increasing. The plan is to bring water from the River Buyukmelen to Istanbul's drinking-water reservoirs. According to the Water Pollution Regulations, the River Buyukmelen belongs to quality class 1 based on Hg, Cd, Pb, As, Cu, Cr, Zn, Mn, Se, Ba, Na+, Cl,, and SO2,4; and to quality class 3 based on Fe concentration. The concentration of Fe in the River Buyukmelen exceeds the limit values permitted by the World Health Organization and the Turkish Standard. Because water from the River Buyukmelen will be used as drinking water, it will have an adverse effect on water quality and humans if not treated in advance. In addition, the inclusion of Mn and Zn in the Elmali drinking-water reservoir of Istanbul and Fe in the River Buyukmelen water indicates natural inorganic contamination. Mn, Zn and Fe contents in the waters are related to geological origin. Moreover, the River Buyukmelen flow is very muddy in the rainy seasons and it is inevitable that this will pose problems during the purification process. Copyright © 2005 John Wiley & Sons, Ltd. [source]


DEPOSITIONAL HISTORY AND SEQUENCE STRATIGRAPHY OF OUTCROPPING TERTIARY CARBONATES IN THE JAHRUM AND ASMARI FORMATIONS, SHIRAZ AREA (SW IRAN)

JOURNAL OF PETROLEUM GEOLOGY, Issue 2 2004
M. Nadjafi
The Oligo-Miocene Asmari Formation is one of the most important petroleum reservoir units in the Zagros Basin of south and SW Iran. It mainly consists of limestones and dolomitic limestones with interbedded shales, together with a few intervals of sandstone and gypsum assigned to the Ahwaz and Kalhur Members, respectively. The Asmari Formation rests on the thin-bedded limestones of the Jahrum Formation (Paleocene-Eocene). In this paper, we report on the lithofacies characteristics of these two formations using data from three measured outcrop sections near Shiraz in SW Iran. From field and petrographic data, we have identified four major lithofacies and twelve subfacies which are interpreted to have been deposited in open-marine, shoal, lagoon and tidal flat settings. We show that the Asmari and Jahrum Formations constitute two separate depositional sequences which are separated by a thin palaeosol, representing a type-one sequence boundary which can be correlated with global curves of relative sea-level. Each depositional sequence is composed of many metre-scale shallowing-upward parasequences. This is the first time that the Asmari and Jahrum Formations have been differentiated in the study area. We hope that this study will lead to a better understanding of the Asmari Formation in the subsurface in other parts of the Zagros Basin. [source]