Dose Administration (dose + administration)

Distribution by Scientific Domains


Selected Abstracts


Distribution, metabolism, and excretion of a novel surface-active agent, purified poloxamer 188, in rats, dogs, and humans

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 9 2002
J. Michael Grindel
Abstract Purified poloxamer 188 (PP188) is a nonionic, block copolymer surfactant with hemorheologic, antithrombotic, and anti-adhesive properties. PP188 is being studied in phase III clinical trials in sickle cell disease and has been found to be well tolerated and has demonstrated benefit in ameliorating the effects of acute painful vasoocclusive crisis. The disposition of PP188 was studied in rats, dogs, and humans to establish a basis for understanding the safety parameters in support of clinical trials. PP188 was primarily distributed in extracellular water with little or no uptake by red blood cells, and had its highest concentrations in highly perfused tissues such as the kidney, liver, spleen, lymph nodes, and gastrointestinal tract. PP188 had no apparent effect on P450 isozymes in vitro. Metabolism was limited (<,5% of dose) with a higher molecular weight copolymer being the only other material detected in plasma or urine. Renal clearance was the controlling route of clearance for PP188 from the body. The 48-h intravenous infusion doses of PP188 were cleared in all species by approximately 1 week after the cessation of dose administration. PP188's disposition is a model for other nonionic block copolymers with similar physical and chemical properties. © 2002 Wiley-Liss Inc. and the American Pharmaceutical Association J Pharm Sci 91:1936,1947, 2002 [source]


Brain neurotransmitter receptor binding and nootropic studies on Indian Hypericum perforatum Linn.

PHYTOTHERAPY RESEARCH, Issue 3 2002
Vikas Kumar
Abstract The high affinity binding sites for serotonin and benzodiazepine in the frontal cortex, for dopamine in the striatum and muscarinic cholinergic receptors in the hippocampus were investigated in the brains of Charles Foster rats treated for 3 days. Transfer latency on elevated plus maze (TL), passive and active avoidance behaviour (PA and AA) and electroconvulsive shock (ECS) induced amnesia were also studied. Pilot studies indicated that single dose administration of Indian Hypericum perforatum (IHp) had little or no acute behavioural effects and hence the extract of IHp was administered orally at two dose levels (100 and 200,mg/kg, p.o.) once daily for 3 consecutive days, while piracetam (500,mg/kg, i.p.), a clinically used nootropic agent, was administered acutely to rats as the standard nootropic agent. Control rats were treated with an equal volume of vehicle (0.3%,carboxymethyl cellulose). The results indicate that IHp treatment caused a significant decrease in the binding of [3H] spiroperone (DA-D2 receptor) to the striatum and an increase in the binding of [3H] ketanserin (5-HT2A receptor) and [3H] flunitrazepam (BDZ receptor) to the frontal cortex in rats. Preliminary pharmacological studies with IHp extract indicate the presence of two major behavioural actions, namely, antidepressant and anxiolytic. The present findings tend to elucidate the mechanism of earlier observations, the downregulation of the dopamine D2 receptor being consonant with anxiolytic and the upregulation of 5-HT2A and BDZ receptors being consonant with antidepressant activity. Piracetam when given alone, shortened the TL on days 1, 2 and 9 day and also antagonized the amnesic effects of ECS on the TL significantly, whereas IHp antagonized the amnesia produced by ECS. IHp had no significant effect per se on the retention of the PA in rats but produced a significant reversal of ECS induced PA retention deficit. Piracetam showed a significant facilitatory effect per se on PA retention and also reversed the ECS induced impaired PA retention. In the AA test, piracetam facilitated the acquisition and retention of AA in rats but IHp had no effect per se. Both the doses of IHp and piracetam significantly attenuated the ECS induced impaired retention of AA. These results indicate a possible nootropic action of IHp in amnesic animals, which was comparable qualitatively to piracetam. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Liquid chromatographic,tandem mass spectrometry assay for quantitation of a novel antidiabetic S002-853 in rat plasma and its application to pharmacokinetic study,

BIOMEDICAL CHROMATOGRAPHY, Issue 7 2010
N. Gautam
Abstract A sensitive and selective LC-MS/MS method has been developed and validated for the estimation of novel antidiabetic synthetic flavonoid S002-853 in rat plasma using centchroman as an internal standard. The method involves a simple two-step liquid,liquid extraction with diethyl ether. The analyte was chromatographed on a Pierce Spheri-5, guard cyano column (30 × 4.6,,mm i.d., 5,,µm) with isocratic mobile phase consisting of methanol,ammonium acetate buffer (pH 4.6, 10,,mm; 90,:,10, v/v) at a flow rate of 0.75,,mL/min. The API 4000 triple-quadrupole LC,MS/MS system was operated under multiple reaction-monitoring mode. The ionization was performed by electrospray ionization technique in positive ion mode. The chromatographic run time was 6,,min and the weighted (1/x2) calibration curves were linear over the range 0.78,400,,ng/mL. The limit of detection and lower limit of quantification were 0.195 and 0.78,,ng/mL, respectively. The intra- and inter-batch accuracy (%bias) and precision (%RSD) were found to be less than 8.47 and 11.6% respectively. The average absolute recoveries of S002-853 and internal standard from spiked plasma samples were >90%. S002-853 was stable for 8,,h at ambient temperature, 4 weeks at ,60°C and after three freeze,thaw cycles. The assay was successfully applied to determine the pharmacokinetic parameters in male Sprague,Dawley rats after an oral dose administration at 25,,mg/kg. Copyright © 2009 John Wiley & Sons, Ltd. [source]


High performance liquid chromatographic,mass spectrometric assay for the quantitation of BMS-204352 in dog K3EDTA plasma

BIOMEDICAL CHROMATOGRAPHY, Issue 3 2002
Ming Yao
A high performance liquid chromatographic-mass spectrometric (LC/MS) assay was developed and validated for the determination of BMS-204352 in dog K3EDTA plasma. A 0.5,mL aliquot of control plasma was spiked with BMS-204352 and internal standard (IS) and buffered with 1,mL of 5,mM ammonium acetate. The mixture was then extracted with 3,mL of toluene. After separation and evaporation of the organic phase to dryness using nitrogen at 40°C, the residue was reconstituted in the mobile phase and 25,µL of the sample were injected onto a Hypersil C18 column (2,×,50,mm; 3,µm) at a flow rate of 0.5,mL/min. The mobile phase was consisted of two solvent mixtures (A and B). Solvent A was composed of 5,mM ammonium acetate and 0.1% triethylamine in 75:25 v/v water:methanol, pH adjusted to 5.5 with glacial acetic acid, and solvent B was 5,mM ammonium acetate in methanol. A linear gradient system was used to elute the analytes. The mass spectrometer was programmed to admit the de-protonated molecules at m/z 352.7 (IS) and m/z 357.9 (BMS-204352). Standard curves of BMS-204352 were linear (r2,,,0.998) over the concentration range of 0.5,1000,ng/mL. The mean predicted quality control (QC) concentrations deviated less than 5.1% from the corresponding nominal values (ie 4, 80, 400 and 2000,ng/mL); the within- and between-assay precision of the assay were within 5.5% relative standard deviation. Stability of BMS-204352 was confirmed after at least three freeze/thaw cycles and BMS-204532 was stable in dog plasma when stored frozen at or below ,20°C for at least 16 weeks in spiked QC samples and for at least 4 1/2 weeks for in vivo study samples. BMS-204352 and IS were stable in the injection solvent at room temperature for at least 24,h. The assay was applied to delineate the pharmacokinetic disposition of BMS-204352 in dogs following a single intravenous dose administration. In conclusion, the assay is accurate, precise, specific, sensitive and reproducible for the pharmacokinetic analysis of BMS-204532 in dog plasma. Copyright © 2002 John Wiley & Sons, Ltd. [source]


The absorption, distribution, metabolism and elimination of bevirimat in rats

BIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 7 2008
Peter Bullock
Abstract Bevirimat is the first drug in the class of maturation inhibitors, which treat HIV infection by disrupting the activity of HIV protease enzyme with a mechanism of action distinct from that of conventional protease inhibitors. The absorption, distribution, metabolism and elimination characteristics of single intravenous (25,mg/kg) and oral (25,mg/kg and 600,mg/kg) doses of 14C-bevirimat were studied in male Sprague Dawley and Long Evans rats. Pharmacokinetic and mass-balance studies revealed that bevirimat was cleared rapidly (within 12,24,h) after dosing, although plasma radioactivity was quantifiable up to 168,h. Radioactive metabolites of bevirimat were responsible for approximately 60,80% of plasma radioactivity. Systemically available bevirimat was predominantly (97%) excreted via bile in the faeces, with ,1% of the dose excreted renally. Less than 0.1% of the dose was excreted in expired air. Quantitative whole-body autoradiography detected high quantities of radioactivity in the bile and liver soon after intravenous dose administration, and evidence of biliary excretion present during the 8,h following oral dosing. Oral bioavailability for the 25,mg/kg dose of bevirimat was estimated at 22,24% by pharmacokinetic and mass-balance methods, with bioavailability decreasing disproportionately with increasing dose for the 600,mg/kg group. Copyright © 2008 John Wiley & Sons, Ltd. [source]


A multiple-dose, safety, tolerability, pharmacokinetics and pharmacodynamic study of oral recombinant human interleukin-11 (oprelvekin)

BIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 7 2004
Monette M. Cotreau
Abstract A study in healthy men and women was performed to assess the safety, tolerability, pharmacokinetics (PK) and pharmacodynamics (PD) of orally administered recombinant human interleukin-11 (oprelvekin) (OAO). Four cohorts of 10 subjects each received 3, 5, 10 or 30 mg (8:2/OAO:placebo ratio), first as a single dose with a 7-day washout period, then 7 consecutive daily doses. Safety was assessed by ongoing evaluation of adverse events (AEs) and laboratory values. PK samples were collected on the first and last day of dose administration. The established effects of subcutaneous oprelvekin on C-reactive protein (CRP, ,), platelet count (,), fibrinogen (,) and hemoglobin (,), were evaluated. PK analysis showed that most subjects (27/34, 79%) had undetectable serum levels of IL-11. PD measures showed no changes from baseline between any OAO group and the placebo group. Orally administered oprelvekin was safe and well tolerated at all doses. A total of five AEs (abdominal pain, diarrhea, headache, rhinitis, grade 3 alanine aminotransferase elevation) were reported across all groups. Evaluations of serum IL-11 levels indicate that OAO is not systemically absorbed at levels above the lower limit of the bioanalytic assay. These data in addition to the lack of effect on PD measures suggest that there is a decreased potential of systemic adverse events with OAO. Copyright © 2004 John Wiley & Sons, Ltd. [source]


The pharmacokinetics, pharmacodynamics and tolerability of dabigatran etexilate, a new oral direct thrombin inhibitor, in healthy male subjects

BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, Issue 3 2007
Joachim Stangier
Aims The novel direct thrombin inhibitor (DTI), dabigatran etexilate (Boehringer Ingelheim Pharma GmbH & Co. KG), shows potential as an oral antithrombotic agent. Two double-blind, randomized trials were undertaken to investigate the pharmacokinetics (PK), pharmacodynamics (PD) and tolerability of orally administered dabigatran etexilate in healthy male subjects. Methods Dabigatran etexilate or placebo was administered orally at single doses of 10,400 mg (n = 40) or at multiple doses of 50,400 mg three times daily for 6 days (n = 40). Plasma and urine samples were collected over time to determine the PK profile of dabigatran. PD activity was assessed by its effects on blood coagulation parameters: activated partial thromboplastin time (aPTT), prothrombin time (PT), reported as international normalized ratio (INR), thrombin time (TT), and ecarin clotting time (ECT). All adverse events were recorded. Results Dabigatran etexilate was rapidly absorbed with peak plasma concentrations of dabigatran reached within 2 h of administration. This was followed by a rapid distribution/elimination phase and a terminal phase, with associated estimated half-lives of 8,10 h and 14,17 h with single and multiple dose administrations, respectively. Dabigatran exhibited linear PK characteristics with dose-proportional increases observed in maximum plasma concentration and area under the curve. Steady-state conditions were reached within 3 days with multiple dosing. The mean apparent volume of distribution during the terminal phase (Vz/F) of 1860 l (range 1430,2400 l) and the apparent total clearance after oral administration (CLtot/F) of 2031 ml min,1 (range 1480,2430), were dose independent. Time curves for aPTT, INR, TT and ECT paralleled plasma concentration,time curves with values increasing rapidly and in a dose-dependent manner. At the highest dose of 400 mg administered three times daily, maximum prolongations over baseline of 3.1 (aPTT), 3.5 (INR), 29 (TT) and 9.5-fold (ECT) were observed. Dabigatran underwent conjugation with glucuronic acid to form pharmacologically active conjugates that accounted for approximately 20% of total dabigatran in plasma. Overall, variability in PK parameters was low to moderate, with an average interindividual coefficient of variation (CV) of approximately 30% and variability in PD parameters was low, with CV < 10%. Of the four assays, TT and ECT exhibited the greatest sensitivity and precision within the anticipated therapeutic dose range. Bleeding events were few and were mild-to-moderate in intensity, occurring only in the higher, multiple dose groups. Conclusions These data suggest that dabigatran etexilate is a promising novel oral DTI with predictable PK and PD characteristics and good tolerability. Further investigation of dabigatran etexilate for the treatment and prophylaxis of patients with arterial and venous thromboembolic disorders, acute coronary syndromes and other medical conditions is warranted. [source]