Home About us Contact | |||
Distribution Limits (distribution + limit)
Selected AbstractsAnnual temperature history in Southwest Tibet during the last 400 years recorded by tree ringsINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 7 2010Bao Yang Abstract We present a tree ring-width record from the southern Tibetan Plateau (TP) which spans from 1612,1998 AD (387 years). The series was developed from Tibetan juniper (Juniperus tibetica Kom) growing at sites near the western distribution limit of the species. Two versions of the chronology, a traditionally standardized chronology (TSC) and a regional curve standardization (RCS)chronology were developed. Linear regression models between ring width and mean annual temperature account for 41% (TSC) and 43% (RCS) of the annual (July,June) temperature variance for the period 1957,1998. According to the TSC reconstruction, warm periods occurred during the 1620s, 1650,1675, 1720s, 1740,1790, 1810s, 1850s,1890s, 1935,1950, and 1957,1964 and since 1980. Cold conditions prevailed during the 1630s,1640s, 1680s,1710s, 1730s, 1820,1840s, 1900s,1920s and the 1970s. Within the last 400 years, the late-20th century warming is distinctive but still within the range of natural climatic variability of this region. Comparison of our TSC reconstruction with proxy temperature records from other parts of the TP shows that the cold conditions during the 1730s, 1900s,1920s, and 1970s, and the warm periods during the 1770,1800, 1850s,1890s, 1935,1950, and 1957,1964 and since 1980 were synchronously occurring broad-scale climate anomalies on the whole TP. Differences between the reconstructions are found during the 17th century and around 1760, which were probably caused by local differences in temperature change and different sensitivity in seasonality. The RCS series portrays low-frequency variations such as warm periods during 1620,1640, 1650,1690, 1715,1790, and 1845,1875, and cold conditions during 1640,1650, 1690,1715, and 1875,1995. These long-term trends need to be verified by developing other proxy records that target to capture low-frequency signals in the future. Copyright © 2009 Royal Meteorological Society [source] Descriptive biogeography of Tomicus (Coleoptera: Scolytidae) species in SpainJOURNAL OF BIOGEOGRAPHY, Issue 12 2004D. Gallego Abstract Aim, location,Tomicus (Coleoptera, Scolytidae) species are some of the principal pests of Eurasian forest and are represented by three coexisting species in Spain, Tomicus piniperda (Linnaeus, 1758), Tomicus destruens (Wollaston, 1865) and Tomicus minor (Harting, 1834). The distribution of two taxa are unknown as they have until recently been considered separate species. Therefore, we model the potential distribution centres and establish the potential distribution limits of Tomicus species in Iberia. We also assess the effectiveness of different models by comparing predicted results with observed data. These results will have application in forest pest management. Methods, Molecular and morphological techniques were used to identify species from 254 specimens of 81 plots. For each plot, a Geographical Information System was used to extract a set of 14 environmental (one topographic, six climatic) and biotic variables (seven host tree distributions). General Additive Models and Ecological Niche Factor Analysis models are applied for modelling and predicting the potential distribution of the three especies of Tomicus. Results, The results of both modelling methodologies are in agreement. Tomicus destruens is the predominant species in Spain, living in low and hot areas. Tomicus piniperda occurs in lower frequency and prefers wet and cold areas of north-central Spain. We detected sympatric populations of T. destruens and T. piniperda in Northern coast of Spain, infesting mainly P. pinaster. Tomicus minor is the rarest species, and it occupies a fragmented distribution located in high and wet areas. The remarkable biotic variable is the distribution of P. sylvestris, incorporated into the models of T. destruens and T. piniperda. Main conclusions, These results indicate that in wet areas of north-central Spain where T. piniperda occurs (and possibly the high altitudes of the southern mountains), T. destruens has a climatic distribution limit. In the northern border of this area, both species overlap their distributions and some co-occurrences were detected. Tomicus minor potentially occurs in high and wet fragmented areas. [source] Susceptibility of zoospores to UV radiation determines upper depth distribution limit of Arctic kelps: evidence through field experimentsJOURNAL OF ECOLOGY, Issue 2 2006CHRISTIAN WIENCKE Summary 1The UV susceptibility of zoospores of the brown seaweeds Saccorhiza dermatodea, Alaria esculenta and Laminaria digitata (Laminariales) was determined in field experiments in June 2004 on Spitsbergen (78°55, N, 11°56, E). 2Freshly released zoospores were exposed for 1 or 2 days at various water depths to ambient solar radiation, ambient solar radiation depleted of UVB radiation (UVBR) and ambient solar radiation depleted of both UVBR and UVAR. Subsequently, germination rates were determined after exposure to favourable light and temperature conditions in the laboratory. 3The radiation regime was monitored at the water surface and in the water column using data loggers attached adjacent to each experimental platform for the duration of the field exposure. 4Under ambient solar radiation, the tolerance of zoospores to UVR was highest in the shallow water species S. dermatodea, intermediate in the upper to mid sublittoral A. esculenta and lowest in the upper to mid sublittoral L. digitata. There was, however, no difference in the susceptibility of the zoospores to ambient solar radiation or to solar radiation depleted of UVBR. 5The water column was relatively UV transparent, especially in the upper water layers. The 1% UVB depth ranged between 5.35 and 6.87 m, although on one stormy day the 1% UVB depth was only 3.57 m, indicating resuspension of sediments. 6Early developmental stages are most susceptible to environmental stress. Tolerance of zoospores to UVR is a major if not one of the most important factors determining the upper distribution limit of different Laminariales on the shore. 7Kelps are very important primary producers in inshore coastal ecosystems, serving as food for herbivores and as habitat for many organisms. Enhanced UVBR due to stratospheric ozone depletion may lead to changes in the depth distribution of kelps and may cause significant ecological domino effects. [source] Sensitivity of the Early Life Stages of Macroalgae from the Northern Hemisphere to Ultraviolet Radiation,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2007Michael Y. Roleda The reproductive cells of macroalgae are regarded as the life history stages most susceptible to various environmental stresses, including UV radiation (UVR). UVR is proposed to determine the upper depth distribution limit of macroalgae on the shore. These hypotheses were tested by UV-exposure experiments, using spores and young thalli of the eulittoral Rhodophyceae Mastocarpus stellatus and Chondrus crispus and various sublittoral brown macroalgae (Phaeophyceae) with different depth distribution from Helgoland (German Bight) and Spitsbergen (Arctic). In spores, the degree of UV-induced inhibition of photosynthesis is lower in eulittoral species and higher in sublittoral species. After UV stress, recovery of photosynthetic capacity is faster in eulittoral compared to sublittoral species. DNA damage is lowest while repair of DNA damage is highest in eulittoral compared to sublittoral species. When the negative impact of UVR prevails, spore germination is inhibited. This is observed in deep water kelp species whereas the same UVR doses do not inhibit germination of shallow water kelp species. A potential acclimation mechanism to increase UV tolerance of brown algal spores is the species-specific ability to increase the content of UV-absorbing phlorotannins in response to UV-exposure. Growth rates of young Mastocarpus and Chondrus gametophytes exposed to experimental doses of UVR are not affected while growth rates of all young kelp sporophytes exposed to UVR are significantly lowered. Furthermore, morphological UV damage in Laminaria ochroleuca includes tissue deformation, lesion, blistering and thickening of the meristematic part of the lamina. The sensitivity of young sporophytes to DNA damage is correlated with thallus thickness and their optical characteristics. Growth rate is an integrative parameter of all physiological processes in juvenile plants. UV inhibition of growth may affect the upper distribution depth limit of adult life history stages. Juveniles possess several mechanisms to minimize UVR damage and, hence, are less sensitive but at the expense of growth. The species-specific susceptibility of the early life stages of macroalgae to UVR plays an important role for the determination of zonation patterns and probably also for shaping up community structure. [source] Predicting potential impacts of climate change on the geographical distribution of enchytraeids: a meta-analysis approachGLOBAL CHANGE BIOLOGY, Issue 11 2007MARÍA JESÚS I. BRIONES Abstract The expectation that atmospheric warming will be most pronounced at higher latitudes means that Arctic and montane systems, with predominantly organic soils, will be particularly influenced by climate change. One group of soil fauna, the enchytraeids, is commonly the major soil faunal component in specific biomes, frequently exceeding above-ground fauna in biomass terms. These organisms have a crucial role in carbon turnover in organic rich soils and seem particularly sensitive to temperature changes. In order to predict the impacts of climate change on this important group of soil organisms we reviewed data from 44 published papers using a combination of conventional statistical techniques and meta-analysis. We focused on the effects of abiotic factors on total numbers of enchytraeids (a total of 611 observations) and, more specifically, concentrated on total numbers, vertical distribution and age groupings of the well-studied species Cognettia sphagnetorum (228 observations). The results highlight the importance of climatic factors, together with vegetation and soil type in determining global enchytraeid distribution; in particular, cold and wet environments with mild summers are consistently linked to greater densities of enchytraeids. Based on the upper temperature distribution limits reported in the literature, and identified from our meta-analyses, we also examined the probable future geographical limits of enchytraeid distribution in response to predicted global temperature changes using the HadCM3 model climate output for the period between 2010 and 2100. Based on the existing data we identify that a maximum mean annual temperature threshold of 16 °C could be a critical limit for present distribution of field populations, above which their presence would decline markedly, with certain key species, such as C. sphagnetorum, being totally lost from specific regions. We discuss the potential implications for carbon turnover in these organic soils where these organisms currently dominate and, consequently, their future role as C sink/source in response to climate change. [source] The effect of past changes in inter-annual temperature variability on tree distribution limitsJOURNAL OF BIOGEOGRAPHY, Issue 7 2010Thomas Giesecke Abstract Aim, The northern limits of temperate broadleaved species in Fennoscanndia are controlled by their requirements for summer warmth for successful regeneration and growth as well as by the detrimental effects of winter cold on plant tissue. However, occurrences of meteorological conditions with detrimental effects on individual species are rare events rather than a reflection of average conditions. We explore the effect of changes in inter-annual temperature variability on the abundances of the tree species Tilia cordata, Quercus robur and Ulmus glabra near their distribution limits using a process-based model of ecosystem dynamics. Location, A site in central Sweden and a site in southern Finland were used as examples for the ecotone between boreal and temperate forests in Fennoscandia. The Finnish site was selected because of the availability of varve-thickness data. Methods, The dynamic vegetation model LPJ-GUESS was run with four scenarios of inter-annual temperature forcing for the last 10,000 years. In one scenario the variability in the thickness of summer and winter varves from the annually laminated lake in Finland was used as a proxy for past inter-annual temperature variability. Two scenarios were devised to explore systematically the effect of stepwise changes in the variance and shape parameter of a probability distribution. All variability scenarios were run both with and without the long-term trend in Holocene temperature change predicted by an atmospheric general circulation model. Results, Directional changes in inter-annual temperature variability have significant effects on simulated tree distribution limits through time. Variations in inter-annual temperature variability alone are shown to alter vegetation composition by magnitudes similar to the magnitude of changes driven by variation in mean temperatures. Main conclusions, The varve data indicate that inter-annual climate variability has changed in the past. The model results show that past changes in species abundance can be explained by changes in the inter-annual variability of climate parameters as well as by mean climate. Because inter-annual climatic variability is predicted to change in the future, this component of climate change should be taken into account both when making projections of future plant distributions and when interpreting vegetation history. [source] Climatic limits for the present distribution of beech (Fagus L.) species in the worldJOURNAL OF BIOGEOGRAPHY, Issue 10 2006Jingyun Fang Abstract Aim, Beech (Fagus L., Fagaceae) species are representative trees of temperate deciduous broadleaf forests in the Northern Hemisphere. We focus on the distributional limits of beech species, in particular on identifying climatic factors associated with their present range limits. Location, Beech species occur in East Asia, Europe and West Asia, and North America. We collated information on both the southern and northern range limits and the lower and upper elevational limits for beech species in each region. Methods, In total, 292 lower/southern limit and 310 upper/northern limit sites with available climatic data for all 11 extant beech species were collected by reviewing the literature, and 13 climatic variables were estimated for each site from climate normals at nearby stations. We used principal components analysis (PCA) to detect climatic variables most strongly associated with the distribution of beech species and to compare the climatic spaces for the different beech species. Results, Statistics for thermal and moisture climatic conditions at the lower/southern and upper/northern limits of all world beech species are presented. The first two PCA components accounted for 70% and 68% of the overall variance in lower/southern and upper/northern range limits, respectively. The first PCA axis represented a thermal gradient, and the second a moisture gradient associated with the world-wide distribution pattern of beech species. Among thermal variables, growing season warmth was most important for beech distribution, but winter low temperature (coldness and mean temperature for the coldest month) and climatic continentality were also coupled with beech occurrence. The moisture gradient, indicated by precipitation and moisture indices, showed regional differences. American beech had the widest thermal range, Japanese beeches the most narrow; European beeches occurred in the driest climate, Japanese beeches the most humid. Climatic spaces for Chinese beech species were between those of American and European species. Main conclusions, The distributional limits of beech species were primarily associated with thermal factors, but moisture regime also played a role. There were some regional differences in the climatic correlates of distribution. The growing season temperature regime was most important in explaining distribution of Chinese beeches, whilst their northward distribution was mainly limited by shortage of precipitation. In Japan, distribution limits of beech species were correlated with summer temperature, but the local dominance of beech was likely to be dependent on snowfall and winter low temperature. High summer temperature was probably a limiting factor for southward extension of American beech, while growing season warmth seemed critical for its northward distribution. Although the present distribution of beech species corresponded well to the contemporary climate in most areas, climatic factors could not account for some distributions, e. g., that of F. mexicana compared to its close relative F. grandifolia. It is likely that historical factors play a secondary role in determining the present distribution of beech species. The lack of F. grandifolia on the island of Newfoundland, Canada, may be due to inadequate growing season warmth. Similarly, the northerly distribution of beech in Britain has not reached its potential limit, perhaps due to insufficient time since deglaciation to expand its range. [source] Descriptive biogeography of Tomicus (Coleoptera: Scolytidae) species in SpainJOURNAL OF BIOGEOGRAPHY, Issue 12 2004D. Gallego Abstract Aim, location,Tomicus (Coleoptera, Scolytidae) species are some of the principal pests of Eurasian forest and are represented by three coexisting species in Spain, Tomicus piniperda (Linnaeus, 1758), Tomicus destruens (Wollaston, 1865) and Tomicus minor (Harting, 1834). The distribution of two taxa are unknown as they have until recently been considered separate species. Therefore, we model the potential distribution centres and establish the potential distribution limits of Tomicus species in Iberia. We also assess the effectiveness of different models by comparing predicted results with observed data. These results will have application in forest pest management. Methods, Molecular and morphological techniques were used to identify species from 254 specimens of 81 plots. For each plot, a Geographical Information System was used to extract a set of 14 environmental (one topographic, six climatic) and biotic variables (seven host tree distributions). General Additive Models and Ecological Niche Factor Analysis models are applied for modelling and predicting the potential distribution of the three especies of Tomicus. Results, The results of both modelling methodologies are in agreement. Tomicus destruens is the predominant species in Spain, living in low and hot areas. Tomicus piniperda occurs in lower frequency and prefers wet and cold areas of north-central Spain. We detected sympatric populations of T. destruens and T. piniperda in Northern coast of Spain, infesting mainly P. pinaster. Tomicus minor is the rarest species, and it occupies a fragmented distribution located in high and wet areas. The remarkable biotic variable is the distribution of P. sylvestris, incorporated into the models of T. destruens and T. piniperda. Main conclusions, These results indicate that in wet areas of north-central Spain where T. piniperda occurs (and possibly the high altitudes of the southern mountains), T. destruens has a climatic distribution limit. In the northern border of this area, both species overlap their distributions and some co-occurrences were detected. Tomicus minor potentially occurs in high and wet fragmented areas. [source] Recruitment limitation along disturbance gradients in river flood plainsJOURNAL OF VEGETATION SCIENCE, Issue 1 2005W.H.J.M. van Eck Abstract. Question: Along river floodplains lower distribution limits of plant species seem largely determined by their tolerance to rarely occurring floods in the growing season. Such distribution patterns remain fixed for many years suggesting additional effects of winter floods at lower positions. Our objective was to investigate the direct and indirect effects of winter floods on colonization of floodplains in a series of field experiments. Location: River Rhine, The Netherlands. Methods: We measured the direct effects of winter floods on seedling survival and seed removal and survival at low and high floodplain elevation. Indirect effects of winter flooding through changes in the soil were investigated by measuring seedling emergence on soil transplants that were exchanged between high and low floodplain elevation. To investigate indirect effects of floods on the germination environment through changes in the vegetation structure, we measured the effects of vegetation removal on recruitment of sown species. Results: Recruitment was seed limited at both floodplain elevations. An additional effect of vegetation removal on seedling emergence was also observed. Soil types from both zones did not differently affect seedling emergence. Seeds were not removed from the soil surface by a single winter flood. Moreover, seeds remained viable in the soil for at least two years, while the experimental plots were flooded several times during the experimental period. During one of those floods a thick sand layer was deposited at the low zone and subsequently no seedlings were observed anymore. Conclusions: Colonization of low floodplain zones in years between subsequent summer floods is prevented by seed limitation while the direct effects of winter floods are limited except for irregularly occurring sand depositions. [source] Tree Diversity, Forest Structure and Productivity along Altitudinal and Topographical Gradients in a Species-Rich Ecuadorian Montane Rain ForestBIOTROPICA, Issue 2 2010Jürgen Homeier ABSTRACT We studied the spatial heterogeneity of tree diversity, and of forest structure and productivity in a highly diverse tropical mountain area in southern Ecuador with the aim of understanding the causes of the large variation in these parameters. Two major environmental gradients, elevation and topography, representing a broad range of climatic and edaphic site conditions, were analyzed. We found the highest species richness of trees in valleys <2100 m. Valleys showed highest values of basal area, leaf area index and tree basal area increment as well. Tree diversity also increased from ridges to valleys, while canopy openness decreased. Significant relationships existed between tree diversity and soil parameters (pH, total contents of Mg, K, Ca, N and P), and between diversity and the spatial variability of pH and Ca and Mg contents suggesting a dependence of tree diversity on both absolute levels and on the small-scale heterogeneity of soil nutrient availability. Tree diversity and basal area increment were positively correlated, partly because both are similarly affected by soil conditions. We conclude that the extraordinarily high tree species richness in the area is primarily caused by three factors: (1) the existence of steep altitudinal and topographic gradients in a rather limited area creating a small-scale mosaic of edaphically different habitats; (2) the intermingling of Amazonian lowland plant species, that reach their upper distribution limits, and of montane forest species; and (3) the geographical position of the study area between the humid eastern Andean slope and the dry interandean forests of South Ecuador. [source] |