Home About us Contact | |||
Disturbance Events (disturbance + event)
Selected AbstractsTesting species,stone area and species,bryophyte cover relationships in riverine macroinvertebrates at small scalesFRESHWATER BIOLOGY, Issue 3 2008JANI HEINO Summary 1. The species,area relationship is considered amongst the few genuine laws in ecology. Although positive species richness,stone area relationships have been found previously in stream systems, very few studies have simultaneously examined species,individuals, individuals,area, species,bryophyte biomass and individuals,bryophyte biomass relationships. We examined these relationships based on temporally replicated assessments of macroinvertebrates on stones at two river sites. 2. We found only one significant species,area relationship out of six relationship tested, and two significant individuals,area relationships. Even these significant relationships were weak, however. By contrast, we detected significant and rather strong relationships between species richness and the number of individuals at both river sites on all three sampling dates. We also found significant relationships of both species richness and the number of individuals with bryophyte biomass at both river sites on all sampling occasions. One of the river sites was disturbed by a bulldozer, and the species,bryophyte biomass relationships were somewhat stronger after the disturbance event. 3. Our findings are quite surprising, given that there were very weak species,area relationships on stream stones. By contrast, our results suggest a pivotal role for bryophyte biomass in determining the species richness and the number of individuals of stream macroinvertebrates at this small scale. The most probably origin of these relationships begins with bryophyte cover, which determines the number of individuals, and subsequently passively affects species richness. Thus, there is not necessarily a direct mechanism that determines the variability of species richness on stream stones. 4. Experimental studies are needed to disentangle the various mechanisms (e.g. passive sampling, provision of more food, more niche space, flood disturbance refugia) by which bryophyte biomass affects stream macroinvertebrates. [source] Fire and species range in Mediterranean landscapes: an experimental comparison of seed and seedling performance among Centaurea taxaJOURNAL OF BIOGEOGRAPHY, Issue 1 2002Miquel Riba Aim Fire is a major disturbance event in Mediterranean landscapes. In this paper, we experimentally assess the effects of fire and post-fire conditions on seed germination and establishment of twenty Centaurea taxa to test whether differences among taxa are associated with range size. Methods The taxa (species and subspecies) considered were classified as rare and widespread according to their `area of occupancy' in the Mediterranean coast of Spain and France. In a first experiment, we analyse the effects of heat-shock (particularly, room temperature, 70 and 110 °C) on percentage germination and speed of germination (T50). In a second experiment, we analyse the effects of post-fire conditions (shading and soil type: burned/unburned) on seed germination and establishment ability. Results Temperatures over 120 °C resulted in 100% mortality, while temperatures in the range of those expected to be found in the first centimetres down the soil profile during a wildfire (70,110 °C) had no effect on seed germination. Differences in germination percentage and T50 among taxa were not related to rarity. In the post-fire conditions experiment, decreased radiation (shading) increased percentage germination and T50 in most taxa, while burned soil decreased germination in some of them. The effects of post-fire conditions on seedling growth (number of leaves and leaf size) were also different among taxa, but such differences were not related to rarity. However, rarity was associated with low establishment ability, as rare taxa tended to show smaller seedling size and higher mortality rates under the whole range of conditions tested. Main conclusions The results obtained indicate that fire has a negative effect upon the survival of populations in all the taxa considered, and that rare-common differences in germination and seedling establishment are not directly related to disturbance by fire. As far as interspecific differences in range size are concerned, other factors, either alone or in combination with a low regeneration ability after fire, need to be explored further. [source] Oscillating vegetation dynamics in a wet heathlandJOURNAL OF VEGETATION SCIENCE, Issue 1 2005Katharina E. Urban Abstract. Question: The significance of disturbances caused by periodical inundation was investigated with respect to its effects on vegetation dynamics, species richness and fluctuations, and to the relevance of certain plant properties. Location and Method: At a sod-cut stand within nutrient-poor inland sand dunes, permanent plots along a transect were surveyed over a period of up to nine years after sod cutting. Results: In contrast to never inundated plots, periodically inundated plots were characterized by low vegetation cover and by high numbers of species belonging to many different communities, each of them with a low cover. Periodical inundations favoured the presence of pioneers, species tolerant of disturbances, species adapted to wet conditions and stoloni-ferous species. Furthermore, annual fluctuations of species within each plot were higher and most species occurred only sporadically. Discussion: A comprehensive model is presented describing the relevant processes identified in the littoral zone. Changing water tables result in the creation of gaps. The re-colonization of these gaps follows mainly from vegetative regeneration and less to the dispersion of diaspores. Highest species numbers in the zone of moderate disturbances result from a high rate of re-colonization in spite of local extinctions following each disturbance event. It is suggested that colonization abilities are among the most important features for species occurrence at a site rich in disturbances (more important than competitive abilities and more important than a slow rate of displacement). For nature conservation such sites are very important, because they allow (rare) pioneer species to survive for longer periods of time. [source] Metapopulation Extinction Risk under Spatially Autocorrelated DisturbanceCONSERVATION BIOLOGY, Issue 2 2005A. S. KALLIMANIS patrón espacial de perturbación; simulaciones espacialmente explícitas; SLOSS; umbral de extinción Abstract:,Recent extinction models generally show that spatial aggregation of habitat reduces overall extinction risk because sites emptied by local extinction are more rapidly recolonized. We extended such an investigation to include spatial structure in the disturbance regime. A spatially explicit metapopulation model was developed with a wide range of dispersal distances. The degree of aggregation of both habitat and disturbance pattern could be varied from a random distribution, through the intermediate case of a fractal distribution, all the way to complete aggregation (single block). Increasing spatial aggregation of disturbance generally increased extinction risk. The relative risk faced by populations in different landscapes varied greatly, depending on the disturbance regime. With random disturbance, the spatial aggregation of habitat reduced extinction risk, as in earlier studies. Where disturbance was spatially autocorrelated, however, this advantage was eliminated or reversed because populations in aggregated habitats are at risk of mass extinction from coarse-scale disturbance events. The effects of spatial patterns on extinction risk tended to be reduced by long-distance dispersal. Given the high levels of spatial correlation in natural and anthropogenic disturbance processes, population vulnerability may be greatly underestimated both by classical (nonspatial) models and by those that consider spatial structure in habitat alone. Resumen:,Los modelos recientes de extinción generalmente muestran que la agregación espacial de hábitat reduce el riesgo de extinción debido a una recolonización más rápida de sitios vacíos por extinción local. Extendimos la investigación para incluir la estructura espacial en el régimen de perturbación. Desarrollamos un modelo metapoblacional espacialmente explícito en el que el patrón espacial tanto del hábitat como de los regímenes de perturbación podía variar aleatoriamente de fractal a completamente agregado (bloque) y con una amplia gama de distancias de dispersión. El incremento de la agregación espacial de la perturbación generalmente incrementó el riesgo de extinción. El riesgo relativo que enfrentan poblaciones en paisajes diferentes fue muy variable, dependiendo del régimen de perturbación. Con perturbación aleatoria, la agregación espacial de hábitat redujo el riesgo de extinción, como en estudios anteriores. Sin embargo, cuando la perturbación estaba autocorrelacionada espacialmente, esta ventaja se eliminaba o invertía debido a que las poblaciones en hábitats agregados están en riesgo de extinción masiva por eventos perturbadores a escala gruesa. Los efectos de patrones espaciales sobre el riesgo de extinción tendieron a reducirse por la dispersión de larga distancia. Debido a los altos niveles de correlación espacial en los procesos naturales y humanos de perturbación, la vulnerabilidad puede estar enormemente subestimada tanto por modelos clásicos (no espaciales) como por los que sólo consideran la estructura espacial del habitat. Los modelos que consideran la estructura espacial del hábitat solo subestiman el riesgo en comparación con modelos que consideran la estructura especial de la perturbación. [source] The resilience of calcareous and mesotrophic grasslands following disturbanceJOURNAL OF APPLIED ECOLOGY, Issue 3 2005RACHEL A. HIRST Summary 1Understanding habitat disturbance and recovery is vital for successful conservation management and restoration, particularly of subseral communities with high nature conservation interest and sites subject to unavoidable disturbance pressures, such as that arising from access and recreational activities. 2Grassland resilience was investigated on the Salisbury Plain Training Area (SPTA) in southern England, the largest of the UK military training areas. SPTA contains the greatest expanse of unimproved chalk grassland in north-west Europe, a habitat of particular nature conservation interest. 3Historical aerial photographs were used to identify 82 calcareous and mesotrophic grassland sites disturbed over a 50-year time period. Vegetation, soils and seed bank data were collected from each old disturbance site. Revegetation time periods following disturbance were compared, and habitat resilience following disturbance investigated using the succession of surface vegetation along the chronosequence, the combined changes of vegetation and soil chemistry, and finally vegetation and seed bank composition. 4The sampled calcareous grasslands were less resilient following disturbance than the mesotrophic grasslands, with slower colonization of bare ground and target species re-assembly. The mesotrophic grasslands typically took between 30 and 40 years to re-establish following disturbance, whereas calcareous grasslands took at least 50 years. 5Even after such long time periods, there remained subtle but significant differences between the vegetation composition of the disturbed and undisturbed swards. Perennial forb species, particularly hemicryptophytes, persisted at higher frequencies in swards disturbed 50 years ago than in undisturbed swards. 6Synthesis and applications. Prediction of habitat resilience following disturbance is dependent on which components of the system are investigated. However, data such as that presented here can help land managers understand how palimpsests of current habitat characteristics may have evolved, and how disturbance regimes may be managed in the future. It is likely that the resilience of grasslands such as those on SPTA may have been overestimated, and perceptions of habitat carrying capacity for disturbance events may require re-evaluation. [source] Vegetation change from chronic stress events: Detection of the effects of tide gate removal and long-term drought on a tidal marshJOURNAL OF VEGETATION SCIENCE, Issue 3 2007Paul R. Wetzel Godfrey & Wooten (1979, 1981) Abstract Question: Chronic stress events are defined as disturbance events that exceed the lifespan of the dominant plant species, fluctuate in intensity and lack abruptness or physical destruction of biomass. Can the effects of chronic stress events be measured on vegetation communities? Did two chronic stress events, the removal of a tide gate and a four year drought, cause a temporary or permanent shift in the vegetation communities of a tidal marsh? Location: Tidal marsh in southeastern United States. Methods: Change in species composition and dominance and community change on a landscape level salinity gradient were measured between time periods ranging from four months to seven years to construct a statistical baseline reference community at freshwater, oligohaline, and mesohaline sections of a tidal marsh. Statistical shifts in the plant community were defined as changes in the plant community that fell outside of the defined baseline reference community. Results: Plant community changes outside of the reference community occurred in 13 out of 378 community comparisons. Removal of the tide gate had a greater effect on interstitial salinity levels than the drought and was most intense in the oligohaline marsh, where between 20 to 45% of the freshwa-ter/oligohaline community types permanently converted to oligohaline community types. However, community shifts in the freshwater and oligohaline marsh induced by the drought were temporary, lasting from 1 to 3+ years. Neither chronic stress event permanently altered the mesohaline plant communities. Conclusion: The effects of chronic stress events could be detected; an extended historical record of vegetation change (18 years) was necessary to identify community shifts outside of a reference condition of the community and to determine if those shifts were permanent or temporary. [source] Disturbance history of a European old-growth mixed-species forest,A spatial dendro-ecological analysisJOURNAL OF VEGETATION SCIENCE, Issue 5 2005Bernhard E. Splechtna Abstract Question: We were interested if and how variation in frequency and/or size of disturbances affect the dynamics of a montane old-growth forest in Central Europe. Location: The forest, co-dominated by Fagus sylvatica, Picea abies and Abies alba, is located in Lower Austria and represents one of the few sizable virgin forests in Central Europe. Methods: We extracted cores from 100 trees using systematic grid sampling (grid cell size 10 m × 10 m) on each of four 1-ha plots distributed across the old-growth remnant of 300 ha. We inferred disturbance events from rapid early growth and release events. For defining release criteria, we applied the boundary line method. We investigated the spatial structure of current age and gap distributions and past disturbance events in grid cells, using a pair density statistic. Results: The disturbance histories indicate decades with peaks and also extended periods without disturbance. Some peaks occurred synchronously at three of the four plots (1910s, 1930s, 1960s and 1980s). Peaks and gaps in the disturbance chronologies widely agreed with peaks and gaps in the age distributions. Most disturbance events during single decades showed a random spatial distribution. Conclusions: There is considerable variation in disturbance frequency and/or severity over time. Most disturbance events will rather thin the stand than clear larger areas at once. Following scattered disturbance two pathways occur: (1) gap expansion leading to creation of larger gaps, and (2) gap closure by lateral encroachment or by subcanopy trees growing into the canopy. [source] A long-term record of Quercus decline, logging and fires in a southern Swedish Fagus - Picea forestJOURNAL OF VEGETATION SCIENCE, Issue 6 2002Mats Niklasson Tutin et al. (1964,1976) Abstract. We reconstructed forest development and disturbance events (fire and logging) during the last 1000 yr with tree-ring data, pollen and charcoal analysis from a semi-natural Fagus sylvatica-Picea abies forest (ca. 1 km2) in the hemiboreal zone. According to pollen analysis, Quercus robur together with Pinus sylvestris was abundant in the forest until the turn of the 18th/19th centuries when these species disappeared completely (Quercus) or nearly completely (Pinus) and were replaced by Fagus and Picea. The disappearance of Quercus was corroborated by the remarkable discovery of a single Quercus stump that had been cut in the 18th century and had become overgrown and preserved by a very old Picea. In total 11 fires were dated from 1555 to 1748 from fire scars in several Pinus stumps cut 100 - 200 yr ago. Since the last fire in 1748, no Quercus or Pinus have regenerated in the core of the reserve apart from single pines in neighbouring managed forest (80 yr ago). During the period of documented fires Fagus was protected from fires in a refuge made up of large boulders. Picea colonized the region at the time when the fires ceased 250 yr ago. We hypothesize that most of the fires were probably of human origin because of their patchiness and high frequency compared to the natural background levels of lightning ignitions in the region. On a 300-yr time scale, logging and fire suppression seem to strongly overshadow the effect of climate change on forest composition and dynamics. [source] Sequence effects of disturbance on community structureOIKOS, Issue 2 2001Tadashi Fukami The sequence in which disturbance events occur has the potential to affect the structure of ecological communities, but its role has been generally overlooked. Most disturbance studies have focused on the frequency or intensity of disturbance, probably reflecting the influence of the intermediate disturbance hypothesis. To investigate the effects of disturbance sequence on community structure, I created laboratory microcosms of protists and small metazoans analogous to communities found in water-filled bamboo stumps. Using drought (disturbance D) and larval mosquito addition (disturbance M), I examined the following five treatments of disturbance sequence: D-M-D-M, D-D-M-M, M-D-M-D, M-M-D-D, and no disturbance as a control. The response of species to disturbance varied between disturbance types (D or M) as well as among species, and disturbance effects depended on previous disturbance events. As a result, disturbance sequence drove the microcosms onto different successional trajectories, sometimes leading to divergence in final community states in terms of species richness or species composition and relative abundance. This divergence occurred even under the same frequency and intensity of disturbance. These results suggest that historical information on disturbance sequence can be essential for explaining variation in community structure. The interaction of sequence with frequency and intensity likely enhances the role played by disturbance in ecological communities. [source] Differences in benthic cover inside and outside marine protected areas on the Great Barrier Reef: influence of protection or disturbance history?AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 7 2009Monique R. Myers Abstract 1.Marine protected areas (MPAs) are being used increasingly to manage and protect marine resources. Most studies of MPAs have focused on fish. In this study, the influence of MPA protection on coral reef benthic organisms on the Great Barrier Reef (GBR) was investigated. In addition, the interaction between protection and natural disturbance history was examined. 2.Differences in benthic cover inside and outside MPAs were assessed at 15 pairs of Protected and General Use reefs on the GBR using annual monitoring data from the Australian Institute of Marine Science's Long-Term Monitoring Programme (LTMP). At each reef, benthic cover was determined using a benthic video survey at three sites, with each site consisting of five 50,m transect lines separated by at least 250,m running parallel to the reef crest at 6,9,m depth. 3.Benthic cover was related to both protection status and disturbance history, but natural perturbations exerted a stronger influence on benthic cover than did protection status. The influence of natural perturbation was most noticeable for hard coral. 4.Most reefs where no natural disturbance events had occurred (,undisturbed reefs') had higher hard coral cover and lower soft coral cover than General Use reefs. While the high levels of hard coral on Protected reefs may be a result of protection status, it might also have resulted from selection bias that occurred during the initial zoning of the Great Barrier Reef Marine Park (i.e. managers may have given protection status to reefs with high coral cover). 5.These results are likely influenced by the relatively low intensity of human use, both on the Great Barrier Reef in general and at the particular monitoring sites studied. Over time, as local populations and tourism increase, the effect of protection may become more evident at LTMP sites. Copyright © 2009 John Wiley & Sons, Ltd. [source] Hurricane Impacts on a Mangrove Forest in the Dominican Republic: Damage Patterns and Early Recovery,BIOTROPICA, Issue 3 2001Ruth E. Sherman ABSTRACT On 22 September 1998, Hurricane Georges passed over the Dominican Republic causing extensive damage to a 4700 ha mangrove forest that has been the site of a detailed study of vegetation and ecosystem dynamics since 1994. We resurveyed the vegetation in permanent plots at 7 and 18 months after the hurricane to document structural damage of the forest and evaluate early recovery patterns. The intensity of damage was patchy across the landscape. Mortality (>5 cm DBH) ranged from 14 to 100 percent (by density) among the 23 different plots and averaged 47.7 percent across all plots. Reductions in total basal area ranged from 9 to 100 percent, averaging 42.4 percent. Mortality increased by 9 percent between surveys at 7 and 18 months post-hurricane. Interspecific differences in susceptibility to wind damage appeared to be a primary factor contributing to spatial patterns in mortality. Laguncularia racemosa experienced much less mortality (26%) than either Rhizophora mangle (50%) or Avicennia germinans (64%), and plot-level mortality was strongly associated with differences in species composition. There were no clear relationships between canopy height and tree damage at this site. Over 80 percent of the of the surviving R. mangle trees exhibited less than 50 percent crown damage, whereas ca 60 percent of the L. racemosa survivors suffered almost complete (75,100%) crown loss. By 18 months after the hurricane, the percentage of L. racemosa trees in the 75 to 100 percent damage class was reduced to 20 percent; in contrast, the health of many R. mangle individuals appeared to be declining, as the percentage of trees in the 50 to 100 percent damage class increased from 16 to 36 percent. Understory light levels, as measured by the gap light index, increased from an average value of 3 percent in the pre-hurricane forest to 51 percent at 7 months after the hurricane and decreased slightly to 47 percent at 18 months. Few saplings (>1 m tall and <5 cm DBH) survived the hurricane; 72 percent of the tagged individuals in transect-based plots and 66 percent of saplings in pre-hurricane canopy gaps were killed. Seedling and sapling populations of all three species appear to be recovering rapidly although their densities still are lower than in the pre-hurricane forest. It is too early to predict the trajectory of forest recovery, and continued monitoring of the spatial and temporal patterns of forest development is needed to improve our understanding of the role that large-scale disturbance events play on the dynamics of mangrove forest ecosystems. RESUMES El 22 de septiembre de 1998, el huracán Georges pasó sobre la República Dominicana causando daños extensos a 47 km2 de manglar que ha sido objeto un estudio detallado de vegetacion y dinámica de la communidad desde 1994. Se tomarón muestras de la vegetación en parcelas permanentes 7 y 18 meses después de paso del huracán para documentar los daños estructurales del bosque y evaluar los modelos de recuperacion temprana que siguieron posteriormente. La intensidad del daño fue irregular a través del paisaje. La mortalidad (>5 cm de dap) fue de 14 a 100 por ciento (para la densidad) en las 23 parcelas con un promedio de 47.7 por ciento. La reducción en área basal total fue de 9 a 100 por ciento con un promedio de 42.4 por ciento. La mortalidad aumentó 9 por ciento a los 7 y 18 meses después del huracán. Las diferencias interspecificas en la susceptibilidad a los daños causados por el viento fueron un factor contribuyente importante en los patrones espacios de mortalidad. Laguncularia racemosa sufrió menor mortalidad (26%) que Rhizophora mangle (50%) o Avicennia germinans (64%), la mortalidad en las parcelas estuvo asociada fuertemente con la diferencia en composición de especies. No hubo ningún patron definido entre la altura del dosel y el daño del árbol. Más del 80 por ciento de los árboles sobrevivientes de R. mangle exhibieron daoñres menores de 50 por ciento en sus copas, mientras que ca 60 por ciento de los L. racemosa sobrevivientes sufrió una perdida casi total (75-100%). Dieciocho meses despues del huracan, el porcentaje de arboles de L. racemosa con daños del 75-100 por ciento se redujó a 20 por ciento; en contraste, la salud de muchos individuos de R. mangle disminuyó conforme el porcentaje de árboles con daños del 50-100 por ciento aumentó de 16 a 36 por ciento. Los niveles de penetración de luz en el sotobosque, medidos como el indice de iluminacion en los claros, aumentó de un promedio de 3 por ciento antes del huracán. a 51 por ciento 7 meses después del huracán, y disminuyo ligeramente a 47 por [source] |