Home About us Contact | |||
Distinctive Differences (distinctive + difference)
Selected AbstractsCorrosion fatigue of spot-welded austenitic stainless steels in 3.5% NaCl solutionMATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 12 2004M. E. Somervuori Abstract Corrosion fatigue and fatigue properties of spot-welded austenitic stainless steels EN 1.4301 and EN 1.4318 in 2B or 2F and 2H conditions were investigated in 3.5% sodium chloride (NaCl) solution and in air. The shear-loaded specimens were single spot overlap joints. The effect of steel grade, load, frequency, temperature and type of chloride on fatigue strength of the 1.0 mm thick steel specimens was evaluated by using the Taguchi Method®. Increase of the load, rise of temperature and lowering of the frequency accelerate corrosion fatigue of the spot-welded steel samples. Type of chloride had only a minor effect on fatigue strength. The 2B grade spot-welded steel samples exhibited better fatigue strength than the 2H grade samples of the same steels. On the basis of the results obtained by the Taguchi Method® the S-N curves were defined for the spot-welded 1.9 mm thick steels in 3.5% sodium chloride solution at 50°C. For reference the fatigue experiments were performed in air at the ambient temperature. Comparison of the results shows that corrosive environment decreases remarkably the fatigue strength of the spot-welded steels. The EN 1.4301 2H and EN 1.4318 2H steels have no distinctive difference in their corrosion fatigue strength even though they show a different fatigue behaviour in air. The microscopic investigations indicate that the fatigue cracks in the spot welds initiate from either side of the recrystallised area in the HAZ outside the spot-weld nugget both in air and in the corrosive environments. Pre-exposure in the corrosive environment seems to have no major influence on the crack initiation, because the cracks do not initiate at the heat-tinted area of the crevice where the crevice corrosion occurs. [source] Controls on surface water chemistry in two lake-watersheds in the Adirondack region of New York: differences in nitrogen solute sources and sinksHYDROLOGICAL PROCESSES, Issue 10 2007Mari Ito Abstract The southwestern Adirondack region of New York receives among the highest rates of atmospheric nitrogen (N) deposition in the USA. Atmospheric N deposition to sensitive ecosystems, like the Adirondacks, may increase the acidification of soils through losses of exchangeable nutrient cations, and the acidification of surface waters associated with enhanced mobility of nitrate (NO3,). However, watershed attributes, including surficial terrestrial characteristics, in-lake processing, and geological settings, have been found to complicate the relationships between atmospheric N deposition and N drainage losses. We studied two lake-watersheds in the southwestern Adirondacks, Grass Pond and Constable Pond, which are located in close proximity (,26 km) and receive similarly high N deposition, but have contrasting watershed attributes (e.g. wetland area, geological settings). Since the difference in the influence of N deposition was minimal, we were able to examine both within- and between-watershed influences of land cover, the contribution of glacial till groundwater inputs, and in-lake processes on surface water chemistry with particular emphasis on N solutes and dissolved organic carbon (DOC). Monthly samples at seven inlets and one outlet of each lake were collected from May to October in 1999 and 2000. The concentrations of NO3, were high at the Grass Pond inlets, especially at two inlets, and NO3, was the major N solute at the Grass Pond inlets. The concentrations of likely weathering products (i.e. dissolved Si, Ca2+, Mg2+, Na+) as well as acid neutralizing capacity and pH values, were also particularly high at those two Grass Pond inlets, suggesting a large contribution of groundwater inputs. Dissolved organic N (DON) was the major N solute at the Constable Pond inlets. The higher concentrations of DON and DOC at the Constable Pond inlets were attributed to a large wetland area in the watershed. The DOC/DON ratios were also higher at the Constable Pond inlets, possibly due to a larger proportion of coniferous forest area. Although DON and DOC were strongly related, the stronger relationship of the proportion of wetland area with DOC suggests that additional factors regulate DON. The aggregated representation of watershed physical features (i.e. elevation, watershed area, mean topographic index, hypsometric-analysis index) was not clearly related to the lake N and DOC chemistry. Despite distinctive differences in inlet N chemistry, NO3, and DON concentrations at the outlets of the two lakes were similar. The lower DOC/DON ratios at the lake outlets and at the inlets having upstream ponds suggest the importance of N processing and organic N sources within the lakes. Although an inverse relationship between NO3, and DOC/DON has been suggested to be indicative of a N deposition gradient, the existence of this relationship for sites that receive similar atmospheric N deposition suggest that the relationship between NO3, and the DOC/DON ratio is derived from environmental and physical factors. Our results suggest that, despite similar wet N deposition at the two watershed sites, N solutes entering lakes were strongly affected by hydrology associated with groundwater contribution and the presence of wetlands, whereas N solutes leaving lakes were strongly influenced by in-lake processing. Copyright © 2006 John Wiley & Sons, Ltd. [source] Fine-scale heterogeneity in beetle assemblages under co-occurring Eucalyptus in the same subgenusJOURNAL OF BIOGEOGRAPHY, Issue 10 2010Philip S. Barton Abstract Aim, Insect biodiversity is often positively associated with habitat heterogeneity. However, this relationship depends on spatial scale, with most studies focused on differences between habitats at large scales with a variety of forest tree species. We examined fine-scale heterogeneity in ground-dwelling beetle assemblages under co-occurring trees in the same subgenus: Eucalyptus melliodora A. Cunn. ex Schauer and E. blakelyi Maiden (Myrtaceae). Location, Critically endangered grassy woodland near Canberra, south-eastern Australia. Methods, We used pitfall traps and Tullgren funnels to sample ground-dwelling beetles from the litter environment under 47 trees, and examined differences in diversity and composition at spatial scales ranging from 100 to 1000 m. Results, Beetle assemblages under the two tree species had distinctive differences in diversity and composition. We found that E. melliodora supported a higher richness and abundance of beetles, but had higher compositional similarity among samples. In contrast, E. blakelyi had a lower abundance and species richness of beetles, but more variability in species composition among samples. Main conclusions, Our study shows that heterogeneity in litter habitat under co-occurring and closely related eucalypt species can influence beetle assemblages at spatial scales of just hundreds of metres. The differential contribution to fine-scale alpha and beta diversity by each eucalypt can be exploited for conservation purposes by ensuring an appropriate mix of the two species in the temperate woodlands where they co-occur. This would help not only to maximize biodiversity at landscape scales, but also to maintain heterogeneity in species richness, trophic function and biomass at fine spatial scales. [source] Crystal polymorphism in a carbamazepine derivative: OxcarbazepineJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 2 2010Katie M. Lutker Abstract Although crystal polymorphism of carbamazepine (CBZ), an anticonvulsant used to treat epilepsy, has been known for decades, the phenomenon has only recently been noted for its keto-derivative oxcarbazepine (OCB). Here it is demonstrated that OCB possesses at least three anhydrous polymorphs. Although all forms are morphologically similar, making differentiation between crystal modifications by optical microscopy difficult, powder X-ray diffraction, Raman spectroscopy, and thermomicroscopy show distinctive differences. These techniques provide an efficient method of distinguishing between the three polymorphs. The crystal structure of form II of OCB is reported for the first time and the structure of form I has been redetermined at low temperature. Remarkably, both the molecular conformation and crystal packing of form II are in excellent agreement with the blind prediction made in 2007. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:794,803, 2010 [source] The Biology of the Development of the Genital Organs.ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 2005A Multimedia Teaching Program In my presentation, I review the sexual differentiation from the genetic sex until the appearance of the external genitalia and the developmental anomalies to use an animated cartoon. The first critical stage of sexual differentiation occurs at the moment of fertilization, when the genetic sex of the zygote is determined by the nature of the sex chromosome contributed by the sperm. Although an XY zygote is destined to become a male, no distinctive differences between the early development of male and female embryos have been noted. This is accomplished after migration of the primordial germ cell into the early gonad. Because of the early commonality of genital structures, anomalies are the result of abnormal retention or loss of appropriate genital structures. Therefore, most genital anomalies are some form of intersex. During the early differentiation of the gonads, while the mesonephros is still the dominant excretory organ, the gonads arise as ridge like thickenings (gonadal ridge) on its ventromedial face. Differentiation of the indifferent gonads into ovaries or testes occurs after the arrival of the primordial germ cells. The primordial germ cells arise from the endodermal cells of the yolk. The principal function of the Y chromosome is to direct the differentiation of the presented indifferent gonad into a testis from the sixth week, while two X chromosome are presented the ovaries start to develop, from the 12th week. The next and most obvious phase in sexual differentiation of the embryo is the differentiation of the somatic sex. The early embryo develops a dual set of potential genital ducts, one is the original mesonephric (Wolff ) ducts, which persists after degeneration of the mesonephros as an excretory organ, and the another is newly formed pair of ducts called the paramesonephric (Müllerian) ducts. Under the influence of testosterone secreted by the testes, the mesonephric ducts develop into the duct system through which the spermatozoa are conveyed from the testes to the urethra. The potentially female paramesonephric ducts regress under the influence of another product of the embryonic testes, the Müllerian inhibitory factor, a glycoprotein secreted by the Sertoli cells. In genetically female embryos, neither testosterone nor Müllerian inhibitory factor are secreted by the gonads. In the absence of testosterone the mesonephric ducts regress and lack of Müllerian inhibitory factor permits the paramesonephric ducts to develop into oviducts, the uterus and part of the vagina. The next stage is the development of the external genitalia. In very young embryos, a vaguely outlined elevation known as the genital eminence can be seen in the midline, just cephalic to the proctodeal depression. This is soon differentiated into a central prominence (genital tubercle) closely flanked by a pair of folds (genital folds) extending toward the proctodeum. Somewhat farther to either side are rounded elevation known as the genital swellings. From this common starting point the external genitalia of both sex differentiate. If the individual is to develop into a male the genital tubercle, under the influence of dihydrotestosterone, becomes greatly elongated to form the penis and the genital swellings become enlarged to form the scrotal pouches. During the growth of the penis a groove develops along the entire length of its caudal face and is continuous with the slit-like opening of the urogenital sinus. This groove later becomes closed over by a ventral fusion of the genital folds, establishing the penile portion of the urethra. The portion of the urogenital sinus between the neck of the bladder and the original opening of the urogenital sinus becomes the prostetic urethra. In the female, the genital tubercle becomes the clitoris, the genital folds become the labia minora, and the genital swellings become the labia majora. The urethra in the female is derived from the urogenital sinus, being homologous with the prostatic portion of the male urethra. [source] Symmetric Stretching Vibration of CH4 in Clathrate Hydrate StructuresCHEMPHYSCHEM, Issue 14 2010Dr. Hiroshi Ohno Movers and shakers: Vibrational states of CH4 molecules encaged in three clathrate hydrate structures are studied (see picture). Guest methane distribution in the structure-H 512 and 435663 host cavities is revealed for the first time. Raman profiles of the CH4 vibration are dependent not only on types of water cages, but also on clathrate structures (guest compositions), suggesting distinctive differences in molecular interactions between the three hydrate systems. [source] |