Home About us Contact | |||
Distinct Subspecies (distinct + subspecy)
Selected AbstractsIntraspecific genetic analysis of the summer tanager Piranga rubra: implications for species limits and conservationJOURNAL OF AVIAN BIOLOGY, Issue 1 2007Tiffany M. Shepherd The summer tanager Piranga rubra is a Neotropical migrant that has experienced noted declines in the southwestern United States caused by extensive habitat loss of native riparian woodlands. This species is composed of two morphologically and behaviorally distinct taxa that traditionally have been recognized as subspecies, each occupying unique habitats in the southern part of North America. Genetic analyses of intraspecific variation are important in studies of threatened or endangered species because they can indicate whether smaller management units exist below the species level and they also provide estimates of within population variability. Using a mitochondrial DNA marker, the intraspecific genetic variation of this species is explored to determine whether the morphologically and behaviorally distinct subspecies are also genetically unique. By using traditional phylogenetic methods and building haplotype networks, results from this study indicate that the subspecies represent two phylogenetic species and should be managed as separate units. In addition, the level of gene flow among geographically isolated populations of the western subspecies is explored using Nested Clade Phylogeographic Analysis and population genetic tests. These analyses show that populations are genetically diverse and that haplotypes are shared across populations. Newly colonized populations are as diverse as older populations. This suggests that as habitat degrades in traditional breeding areas of the summer tanager, if suitable habitat elsewhere becomes available for new populations, these new colonies should be genetically diverse. [source] Genetic structure of two populations of the Namibian giraffe, Giraffa camelopardalis angolensisAFRICAN JOURNAL OF ECOLOGY, Issue 4 2009Rick A. Brenneman Abstract Two geographically distinct populations of giraffe (Giraffa camelopardalis) were sampled for this study, the northern Namib Desert and Etosha National Park. Population genetic parameters and relationships within subpopulations were estimated to better understand the genetic architecture of this isolated subspecies. Gene flow between the geographically separated populations can be attributed to recent translocation of giraffe between the two populations. Inbreeding estimates in the six subpopulations studied were low though we found evidence that genetic drift may be affecting the genetic diversity of the isolated populations in northern Namibia. Population dynamics of the sampling locations was inferred with relationship coefficient analyses. Recent molecular systematics of the Namibian giraffe populations indicates that they are distinct from the subspecies Giraffa camelopardalis giraffa and classified as G. c. angolensis. Based on genetic analyses, these giraffe populations of northern Namibia, the desert-dwelling giraffe and those protected in Etosha National Park, are a distinct subspecies from that previously assumed; thus we add data on G. c. angolensis to our scientific knowledge of this giraffe of southern Africa. Résumé Deux populations de girafes (Giraffa camelopardalis) distinctes sur le plan géographique ont servi d'échantillons pour cette étude, celle du nord du Désert du Namib et celle du Parc National d'Etosha. Nous avons estimé les paramètres génétiques des populations et les relations au sein des sous-populations pour mieux comprendre l'architecture génétique de cette sous-espèce isolée. Les flux génétiques entre les populations séparées géographiquement peuvent être attribués à la récente translocation de girafes entre ces deux populations. L'inbreeding estimé dans les six sous-populations étudiées était faible, encore que nous ayons découvert des preuves que la dérive génétique pourrait bien affecter la diversité génétique des populations isolées dans le nord de la Namibie. La dynamique des populations des endroits où furent faits les échantillonnages fut déduite en fonction de l'analyse des coefficients. La nouvelle systématique moléculaire des populations de girafes de Namibie indique qu'elles sont distinctes de la sous-espèce Giraffa camelopardalis giraffa et classées comme G.c. angolensis. Selon les analyses génétiques, ces populations de girafes du nord de la Namibie, les girafes qui vivent dans le désert et celles qui sont protégées dans le Parc National d'Etosha sont une sous-espèce distincte de celle que l'on croyait auparavant, et nous ajoutons ainsi des données sur G.c. angolensisà la connaissance scientifique de cette girafe d'Afrique australe. [source] Macrogeographical variability in the great call of Hylobates agilis: assessing the applicability of vocal analysis in studies of fine-scale taxonomy of gibbonsAMERICAN JOURNAL OF PRIMATOLOGY, Issue 2 2010R. Heller Abstract Vocal characteristics have been used extensively to distinguish different taxonomic units of gibbons (family Hylobatidae). The agile gibbon (Hylobates agilis) has a disjunct distribution range in the Southeast Asian archipelago (remnants of the former Sunda landmass), and populations on different islands are currently recognized as distinct subspecies or even species. We recorded great calls from female agile gibbons from two populations on Sumatra and two populations on Borneo and examined the vocal variability on four levels: within-individuals, between-individuals, between-populations and between-islands. The primary objective was to evaluate the effect of geographical isolation on variability in song pattern and to test whether proposed island-specific song characteristics exist, reflecting evolutionary divergence between Sumatran and Bornean agile gibbons. One hundred great calls were recorded from 20 females and analyzed for 18 spectral and temporal acoustic parameters. Principal component analysis followed by a nested ANOVA on components revealed a complex pattern of song variability not likely to reflect taxonomic or evolutionary relationship. We found no evidence that Sumatran and Bornean agile gibbons have evolved different vocal characteristics, refuting a distinction between them based on vocal characteristics. A high level of plasticity was found in great calls from the same individual, and generally the inferred pattern of variability suggested that ecological or social factors may confound any genetically based island dialects. Am. J. Primatol. 72:142,151, 2010. © 2009 Wiley-Liss, Inc. [source] The genetic rescue of the Florida pantherANIMAL CONSERVATION, Issue 2 2006S. L. Pimm Abstract We examine the consequences of panthers introduced from Texas into south Florida, an area housing a small, isolated, inbred and distinct subspecies (Puma concolor coryi). Once part of a continuous, widespread population, panthers became isolated in south Florida more than a century ago. Numbers declined and the occurrence of genetic defects increased. Hoping to reverse the genetic damage, managers introduced eight female panthers from Texas into south Florida in the mid-1990s. This action was highly controversial and we explain the arguments for and against the intervention. We synthesized data systematically collected on the Florida panthers from before, during and after this management intervention. These data include information on movements, breeding, mortality, survivorship and range. There is no evidence that purebred Florida females produce fewer kittens at a later age or less often than do hybrid cats (i.e. those with a Texas ancestor). Hybrid kittens have about a three times higher chance of becoming adults as do purebred ones. Hybrid adult females survive better than purebred females; there is no obvious difference between the males. Males die younger than females, are more often killed by other males and are more likely to disperse longer distances into habitats that are dangerous to them. Hybrids are expanding the known range of habitats panthers occupy and use. [source] Worldwide mitochondrial DNA diversity and phylogeography of pilot whales (Globicephala spp.)BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2009MARC OREMUS Pilot whales (Globicephala spp.) provide an interesting example of recently diverged oceanic species with a complex evolutionary history. The two species have wide but largely non-overlapping ranges. Globicephala melas (long-finned pilot whale; LFPW) has an antitropical distribution and is found in the cold-temperate waters of the North Atlantic and Southern Hemisphere, whereas Globicephala macrorhynchus (short-finned pilot whale; SFPW) has a circumglobal distribution and is found mainly in the tropics and subtropics. To investigate pilot whale evolution and biogeography, we analysed worldwide population structure using mitochondrial DNA (mtDNA) control region sequences (up to 620 bp) from a variety of sources (LFPW = 643; SFPW = 150), including strandings in New Zealand and Tasmania, and whale-meat products purchased on the markets of Japan and Korea. Phylogenetic reconstructions failed to support a reciprocal monophyly of the two species, despite six diagnostic substitutions, possibly because of incomplete lineage sorting or inadequate phylogenetic information. Both species had low haplotype and nucleotide diversity compared to other abundant widespread cetaceans (LFPW, , = 0.35%; SFPW, , = 0.87%) but showed strong mtDNA differentiation between oceanic basins. Strong levels of structuring were also found at the regional level. In LFPW, phylogeographic patterns were suggestive either of a recent demographic expansion or selective sweep acting on the mtDNA. For SFPW, the waters around Japan appear to represent a centre of diversity, with two genetically-distinct forms, as well as a third population of unknown origin. The presence of multiple unique haplotypes among SFPW from South Japan, together with previously documented morphological and ecological differences, suggests that the southern form represents a distinct subspecies and/or evolutionary significant unit. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98, 729,744. [source] |