Displacement Data (displacement + data)

Distribution by Scientific Domains


Selected Abstracts


Basis functions for the consistent and accurate representation of surface mass loading

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2007
Peter J. Clarke
SUMMARY Inversion of geodetic site displacement data to infer surface mass loads has previously been demonstrated using a spherical harmonic representation of the load. This method suffers from the continent-rich, ocean-poor distribution of geodetic data, coupled with the predominance of the continental load (water storage and atmospheric pressure) compared with the ocean bottom pressure (including the inverse barometer response). Finer-scale inversion becomes unstable due to the rapidly increasing number of parameters which are poorly constrained by the data geometry. Several approaches have previously been tried to mitigate this, including the adoption of constraints over the oceanic domain derived from ocean circulation models, the use of smoothness constraints for the oceanic load, and the incorporation of GRACE gravity field data. However, these methods do not provide appropriate treatment of mass conservation and of the ocean's equilibrium-tide response to the total gravitational field. Instead, we propose a modified set of basis functions as an alternative to standard spherical harmonics. Our basis functions allow variability of the load over continental regions, but impose global mass conservation and equilibrium tidal behaviour of the oceans. We test our basis functions first for the efficiency of fitting to realistic modelled surface loads, and then for accuracy of the estimates of the inferred load compared with the known model load, using synthetic geodetic displacements with real GPS network geometry. Compared to standard spherical harmonics, our basis functions yield a better fit to the model loads over the period 1997,2005, for an equivalent number of parameters, and provide a more accurate and stable fit using the synthetic geodetic displacements. In particular, recovery of the low-degree coefficients is greatly improved. Using a nine-parameter fit we are able to model 58 per cent of the variance in the synthetic degree-1 zonal coefficient time-series, 38,41 per cent of the degree-1 non-zonal coefficients, and 80 per cent of the degree-2 zonal coefficient. An equivalent spherical harmonic estimate truncated at degree 2 is able to model the degree-1 zonal coefficient similarly (56 per cent of variance), but only models 59 per cent of the degree-2 zonal coefficient variance and is unable to model the degree-1 non-zonal coefficients. [source]


Introduction to Hydromechanical Well Tests in Fractured Rock Aquifers

GROUND WATER, Issue 1 2009
Todd Schweisinger
This article introduces hydromechanical well tests as a viable field method for characterizing fractured rock aquifers. These tests involve measuring and analyzing small displacements along with pressure transients. Recent developments in equipment and analyses have simplified hydromechanical well tests, and this article describes initial field results and interpretations during slug and constant-rate pumping tests conducted at a site underlain by fractured biotite gneiss in South Carolina. The field data are characterized by displacements of 0.3 ,m to more than 10 ,m during head changes up to 10 m. Displacements are a hysteretic function of hydraulic head in the wellbore, with displacements late in a well test always exceeding those at similar wellbore pressures early in the test. Displacement measurements show that hydraulic aperture changes during well tests, and both scaling analyses and field data suggest that T changed by a few percent per meter of drawdown during slug and pumping tests at our field site. Preliminary analyses suggest that displacement data can be used to improve estimates of storativity and to reduce nonuniqueness during hydraulic well tests involving single wells. [source]


On computing the forces from the noisy displacement data of an elastic body

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 11 2008
A. Narayana Reddy
Abstract This study is concerned with the accurate computation of the unknown forces applied on the boundary of an elastic body using its measured displacement data with noise. Vision-based minimally intrusive force-sensing using elastically deformable grasping tools is the motivation for undertaking this problem. Since this problem involves incomplete and inconsistent displacement/force of an elastic body, it leads to an ill-posed problem known as Cauchy's problem in elasticity. Vision-based displacement measurement necessitates large displacements of the elastic body for reasonable accuracy. Therefore, we use geometrically non-linear modelling of the elastic body, which was not considered by others who attempted to solve Cauchy's elasticity problem before. We present two methods to solve the problem. The first method uses the pseudo-inverse of an over-constrained system of equations. This method is shown to be not effective when the noise in the measured displacement data is high. We attribute this to the appearance of spurious forces at regions where there should not be any forces. The second method focuses on minimizing the spurious forces by varying the measured displacements within the known accuracy of the measurement technique. Both continuum and frame elements are used in the finite element modelling of the elastic bodies considered in the numerical examples. The performance of the two methods is compared using seven numerical examples, all of which show that the second method estimates the forces with an error that is not more than the noise in the measured displacements. An experiment was also conducted to demonstrate the effectiveness of the second method in accurately estimating the applied forces. Copyright © 2008 John Wiley & Sons, Ltd. [source]