Home About us Contact | |||
Dispersion Phase (dispersion + phase)
Selected AbstractsA ceramic microfiltration tube membrane dispersion extractorAICHE JOURNAL, Issue 2 2004G. G. Chen Abstract Although the phase-free membrane extraction process has shown many advantages over the traditional extraction, the process is still at the experimental stage. On the other hand, in a new extractor a microfiltration membrane is used as a dispersion medium. The mass-transfer performance of the new extractor was tested with 30% TBP (in kerosene),nitric acid,H2O as an experimental system. The overall mass-transfer coefficient and the equipment efficiency were calculated with the concentrations of the inlet and outlet. The extractor was designed and constructed with two special inner elements for improving the performance further. The effects of the transmembrane pressure, the continuous-phase flow rate, and the geometric parameters of the inner elements on the mass-transfer performance, as well as on the flux of the dispersion phase, are discussed. The experimental results showed that very higher efficiency was reached. The inner elements could improve the mass-transfer performance greatly by changing the two-phase contact status. The results suggested that the mass-transfer process could be completed quickly while the drop size was in the range of micrometers. In addition, the flux of the dispersed phase was mainly influenced by the transmembrane pressure, not by the equipment structures, inner elements, and the continuous-phase flow rate. The new extractor can be operated with very higher efficiency and higher flux, and the efficiency can be predicted with a cubic polynomial. © 2004 American Institute of Chemical Engineers AIChE J, 50: 382,387, 2004 [source] Interactions between aroma compounds and latex films: partition coefficients and influence on latex film formationPACKAGING TECHNOLOGY AND SCIENCE, Issue 2 2006A. Nestorson Abstract The potential of various latex grades to take up, retain and release different types of aroma compound has been explored. The latex grades used included two styrene,acrylate latices and two styrene,butadiene latices, of which one contained talc. The aroma compounds used were ethyl butyrate, 1-hexanol, heptanal, 3-octanone, ,-pinene and limonene dissolved in propylene glycol. It was shown that talc improves both the uptake of aroma compounds in the dispersion phase and the retention during the film formation process. However, the styrene,acrylate latex had a greater ability than the styrene,butadiene latex to hold the aroma compounds once the films were formed. These results have been compared to calculated solubility parameters. The uptake of 1-hexanol and propylene glycol in the latex dispersions were higher than expected from the theoretical calculations, probably because of the amphiphilic nature of these molecules. In addition, the influence of aroma compounds on the film formation was evaluated. Copyright © 2005 John Wiley & Sons, Ltd. [source] Compatibilizing effect of ethylene,propylene,diene grafted maleic anhydride terpolymer on the blend of polyamide 66 and thermal liquid crystalline polymerPOLYMER COMPOSITES, Issue 6 2006Qunfeng Yue Polyamide 66,thermal liquid crystalline polymer (PA66/TLCP) composites containing 10 wt% TLCP was compatibilized by ethylene,propylene,diene-grafted maleic anhydride terpolymer (MAH- g -EPDM). The blending was performed on a twin-screw extrusion, followed by an injection molding. The rheological, dynamic mechanical analysis (DMA), thermal, mechanical properties, as well as the morphology and FTIR spectra, of the blends were investigated and discussed. Rheological, DMA, and FTIR spectra results showed that MAH- g -EPDM is an effective compatibilizer for PA66/TLCP blends. The mechanical test indicated that the tensile strength, tensile elongation, and the bending strength of the blends were improved with the increase of the content of MAH- g -EPDM, which implied that the blends probably have a great frictional shear force, resulting from strong adhesion at the interface between the matrix and the dispersion phase; while the bending modulus was weakened with the increase of MAH- g -EPDM content, which is attributed to the development of the crystalline phase of PA66 hampered by adding MAH- g -EPDM. POLYM. COMPOS., 27:608,613, 2006. © 2006 Society of Plastics Engineers [source] Zero-dose extrapolation as part of macromolecular synchrotron data reductionACTA CRYSTALLOGRAPHICA SECTION D, Issue 5 2003Kay Diederichs Radiation damage to macromolecular crystals at third-generation synchrotron sites constitutes a major source of systematic error in X-ray data collection. Here, a computational method to partially correct the observed intensities during data reduction is described and investigated. The method consists of a redundancy-based zero-dose extrapolation of a decay function that is fitted to the intensities of all observations of a unique reflection as a function of dose. It is shown in a test case with weak anomalous signal that this conceptually simple correction, when applied to each unique reflection, can significantly improve the accuracy of averaged intensities and single-wavelength anomalous dispersion phases and leads to enhanced experimental electron-density maps. Limitations of and possible improvements to the method are discussed. [source] |