Home About us Contact | |||
Dissipation
Kinds of Dissipation Terms modified by Dissipation Selected AbstractsBioinspired Structural Material Exhibiting Post-Yield Lateral Expansion and Volumetric Energy Dissipation During TensionADVANCED FUNCTIONAL MATERIALS, Issue 18 2010Lifeng Wang Abstract Nature has inspired the design of improved synthetic materials that achieve superior and more efficient mechanical performance. Here microstructures inspired by the inner nacreous layer of seashells are designed and their mechanical properties including stiffness, strength, and energy dissipation are computed using micromechanical analysis. The hierarchical mineral/polymer microstructure can be tailored to achieve not only stiffness and strength, but also lateral plastic expansion during tension providing a volumetric energy dissipation mechanism. [source] Energy Dissipation and Photoinhibition in Douglas-Fir Needles with a Fungal-Mediated Reduction in Photosynthetic RatesJOURNAL OF PHYTOPATHOLOGY, Issue 11-12 2002Daniel K. Manter Abstract The dissipation of absorbed light and potential for photooxidative damage was explored in Douglas-fir (Pseudotsuga menziesii ) seedlings with and without Phaeocryptopus gaeumannii infection. The presence of P. gaeumannii significantly reduced net CO2 assimilation rates from ca. 6 ,mol/m2/s to 1.5 ,mol/m2/s, without any significant impact on chloroplast pigments. The partitioning of absorbed light-energy to photochemistry or thermal dissipation was determined from chlorophyll fluorescence measurements. Maximum thermal dissipation for both control and infected needles was ca. 80%, consistent with the similar xanthophyll pool sizes in the two treatments. At high photosynthetic photon flux density (PPFD), when thermal dissipation was maximized, the lower photochemical utilization in infected needles resulted in greater amounts of excess absorbed light (ca. 20 and 10% for the infected and control needles, respectively). A second experiment, monitoring changes in photosystem II (PSII) efficiency (Fv/Fm) in response to a 1 h high light treatment (PPFD=2000 ,mol/m2/s) also suggests that infected needles absorb greater amounts of excess light. In this experiment, declines in Fv/Fm were 1.5 times greater in infected needles, despite the similar xanthophyll pool sizes. Furthermore, increases in minimum fluorescence (178 and 122% of initial values for the infected and control needles, respectively) suggest that the reduction in PSII efficiency is largely attributable to photooxidative damage. Finally, reductions in PSII efficiency under high light conditions provide a plausible explanation for the greater pathogenicity (e.g. premature needle abscission) of P. gaeumannii in sun-exposed foliage. [source] Mass spectrometry of the photolysis of sulfonylurea herbicides in prairie watersMASS SPECTROMETRY REVIEWS, Issue 4 2010John V. Headley Abstract This review of mass spectrometry of sulfonylurea herbicides includes a focus on studies relevant to Canadian Prairie waters. Emphasis is given to data gaps in the literature for the rates of photolysis of selected sulfonylurea herbicides in different water matrices. Specifically, results are evaluated for positive ion electrospray tandem mass spectrometry with liquid chromatography separation for the study of the photolysis of chlorsulfuron, tribenuron-methyl, thifensulfuron-methyl, metsulfuron-methyl, and ethametsulfuron-methyl. LC,MS/MS is shown to be the method of choice for the quantification of sulfonylurea herbicides with instrumental detection limits ranging from 1.3 to 7.2,pg (on-column). Tandem mass spectrometry coupled with the use of authentic standards likewise has proven to be well suited for the identification of transformation products. To date, however, the power of time-of-flight MS and ultrahigh resolution MS has not been exploited fully for the identification of unknown photolysis products. Dissipation of the herbicides under natural sunlight fit pseudo-first-order kinetics with half-life values ranging from 4.4 to 99 days. For simulated sunlight, radiation wavelengths shorter than 400,nm are required to induce significant photolytic reactions. The correlation between field dissipation studies and laboratory photolysis experiments suggests that photolysis is a major pathway for the dissipation of some sulfonylurea herbicides in natural Prairie waters. © 2009 Wiley Periodicals, Inc., Mass Spec Rev 29:593,605, 2010 [source] Holy Intoxication to Drunken Dissipation: Alcohol among Quichua Speakers in Otavalo, EcuadorAMERICAN ANTHROPOLOGIST, Issue 4 2006MAXIMILIAN VIATORI Holy Intoxication to Drunken Dissipation: Alcohol among Quichua Speakers in Otavalo, Ecuador. Barbara Y. Butler. Albuquerque: University of New Mexico press, 2006. 452 pp. [source] Persistence and metabolism of imidacloprid in different soils of West BengalPEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 7 2001A Sarkar Abstract A laboratory experiment was performed to study the persistence of imidacloprid from two formulations (Confidor 200,g,litre,1 SL and Gaucho 700,g,kg,1 WS), and its metabolism in three different soils (Gangetic alluvial soil of Kalyani, lateritic soil of Jhargram and coastal alkaline soil of Canning) of West Bengal following application at 0.5,kg and 1.0,kg AI,ha,1. Dissipation of imidacloprid in soil followed first-order kinetics and DT50 values ranged from 28.7 to 47.8 days. The shortest half-lives (28.7 and 35.8 days) were observed in the lateritic soil of Jhargram for both liquid and powder formulations. The formation of two metabolites of imidacloprid, imidacloprid-urea and imidacloprid-olefin, was first detected on day 30 of degradation at 28,(±1),°C in all three soils. © 2001 Society of Chemical Industry [source] Dissipation of inclusions in HgCdTe/CdTe films under the influence of laser shock wavesPHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 4 2004Vitaly Yakovyna Abstract Using HgCdTe/CdTe structures as an example, the study of the effect of laser shock waves on the narrow-gap semiconductors with high density of inhomogeneties as well as on the epitaxial layer/substrate interface are presented. It is found that laser shock wave treatment is an effective way to reduce the relative volume of precipitates in semiconductors. The technique is very promising for developing a low-temperature tool for modification of device structures parameters. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Discontinuous deformation in an elastic material.POLYMER ENGINEERING & SCIENCE, Issue 10 2007Part 1. The concept of energy or work dissipation from a perfectly elastic material, due to a discontinuous deformation mechanism, is developed in this study. Dissipation occurs even from a perfectly elastic material, preferably an elastomer, when subjected to a discontinuous "jump" stretch or "jump" contraction. Stretching an elastomeric member through free extension requires a large amount of work. Such a sudden jump stretch of an elastic material is difficult to accomplish and is equivalent to thermodynamic free compression of a gas. The amount of work required can greatly exceed the strain energy stored in the material if the extension were applied without the jump or "shock" process. Interestingly, only part of the stored energy is recovered on unloading the elastomer the same way (through contraction). Excess work lost in contraction dissipates as heat but is not due to the common viscoelastic/plastic losses associated with internal friction in solids. Dissipation is possible even from a perfectly elastic material. Energy values associated in this jump deformation process are independent of the stress,strain curve path, and depend only on initial and final states for the material. Heat dissipation from an elastic rubber belt is examined and some applications extended from the developed principle are enunciated. POLYM. ENG. SCI., 47:1511,1520, 2007. © 2007 Society of Plastics Engineers [source] Dissipation of vortices in CFD-simulationsPROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2003Michael Krieger Dipl.-Ing. The aim of this investigation is to find out the crucial factors for the meshing of a wing and especially the area behind the wingtip with the intention to keep numerical vortex-dissipation low to be able to analyse the trailing edge vortices of the wing in inviscid CFD-simulations. In a series of basic test-simulations spatial vortex propagation is observed for different cell types, mesh sizes and vorticities. A numerical viscosity is determined by comparing numerical results with an analytical solution for vortex-decay. The information gained is applied to a numerical analysis of a trailing edge vortex of a rectangular wing. The results of the numerical calculations are compared to PIV-measurements of trailing edge vortices and analytic results of linear wing theory. [source] Effects of Viscous Dissipation on Heat Transfer between an Array of Long Circular Cylinders and Power Law FluidsTHE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 6 2007R. P. Chhabra Abstract The free surface model has been combined with the equations of motion and of thermal energy to investigate the role of viscous dissipation on heat transfer between banks of long cylinders and power law (shear-thinning and shear-thickening) fluids. The equations of motion cast in the stream function/vorticity formulation have been solved numerically using a second-order accurate finite difference method to obtain extensive information on the behaviour of local and surface-averaged Nusselt numbers over a range of Reynolds numbers 1 , 500, for a wide range of power law indices (0.4 , n , 2.0), Brinkman numbers (0 , Br , 5) and Prandtl numbers (Pr = 1, 1000) at two representative solid volume fractions corresponding to the porosities of e = 0.4 and 0.9. Two different thermal boundary conditions are considered at the cylinder surface: constant temperature (CT) and constant heat flux (CHF). The results presented herein provide a fundamental knowledge about the influence of viscous dissipation on the heat transfer characteristics. The results reported herein further show that the effect of Brinkman number on heat transfer is strongly conditioned by the thermal boundary condition, Prandtl number and the power law index. On a combiné le modèle de surface libre aux équations de mouvement et de transfert de chaleur afin d'étudier le rôle de la dissipation visqueuse sur le transfert de chaleur entre des rangées de cylindres longs pour des fluides de loi de puissance (rhéofluidifiants et rhéoépaississants). Les équations de mouvement formulées en fonction de courant/vorticité ont été résolues numériquement à l'aide d'une méthode de différences finies du second ordre, afin d'obtenir des informations détaillées sur le comportement des nombres de Nusselt locaux et moyennés en surface pour une gamme de nombres de Reynolds compris entre 1 et 500, une large gamme d'indices de loi de puissance (0,4 , n , 2,0), de nombres de Brinkman (0 , Br , 5) et de nombres de Prandtl (Pr = 1,1000) à deux fractions de volume de solides correspondant à une porosité de e = 0,4 et 0,9. Deux conditions aux limites thermiques ont été considérées à la surface du cylindre: la température constante (CT) et le flux de chaleur constant (CHF). Les résultats présentés permettent de rendre compte de l'influence de la dissipation visqueuse sur les caractéristiques du transfert de chaleur et l'effet du nombre de Brinkman sur le transfert de chaleur qui est fortement influencé par la condition aux limites thermique, le nombre de Prandtl et l'indice de loi de puissance. [source] A Relativistic Disk in Sagittarius A*ASTRONOMISCHE NACHRICHTEN, Issue S1 2003Siming Liu The detection of a mm/Sub-mm "bump" in Sgr A*'s radio spectrum suggests that at least a portion of its overall emission is produced within a compact accretion disk. This inference is strengthened by observations of strong linear polarization (at the 10 percent level) within this bump. No linear polarization has been detected yet at other wavelengths. Given that radiation from this source is produced on progressively smaller spatial scales with increasing frequency, the mm/Sub-mm bump apparently arises within a mere handful of Schwarzschild radii of the black hole. We have found that a small (10-Schwarzschild-radii) magnetized accretion disk can not only account for the spectral bump via thermal synchrotron processes, but that it can also reproduce the corresponding polarimetric results. In addition, the quiescent X-ray emission appears to be associated with synchrotron self-Comptonization, while X-ray flares detected from Sgr A* may be induced by a sudden enhancement of accretion through this disk. The hardening of the flare-state X-ray spectrum appears to favor thermal bremsstrahlung as the dominant X-ray emission mechanism during the transient event. This picture predicts correlations among the mm, IR, and X-ray flux densities, that appear to be consistent with recent multi-wavelength observations. Further evidence for such a disk in Sgr A* is provided by its radio variability. Recent monitoring of Sgr A* at cm and mm wavelengths suggests that a spectral break is manifested at 3 mm during cm/Sub-mm flares. The flat cm spectrum, combined with a weak X-ray flux in the quiescent state, rules out models in which the radio emission is produced by thermal synchrotron process in a bounded plasma. One possibility is that nonthermal particles may be produced when the large scale quasi-spherical inflow circularizes and settles down into the small accretion disk. Dissipation of kinetic energy associated with radial motion may lead to particle acceleration in shocks or via magnetic reconnection. On the other hand, the identification of a 106-day cycle in Sgr A*'s radio variability may signal a precession of the disk around a spinning black hole. The disk's characteristics imply rigid-body rotation, so the long precession period is indicative of a small black-hole spin with a spin parameter a/M around 0.1. It is interesting to note that such a small value of a/M would be favored if the nonthermal portion of Sgr A*'s spectrum is powered by a Blandford- Znajek type of process; in this situation, the observed luminosity would correspond to an outer disk radius of about 30 Schwarzschild radii. This disk structure is consistent with earlier hydrodynamical and recent MHD simulations and is implied by Sgr A*'s mm/Sub-mm spectral and polarimetric characteristics. For the disk to precess with such a long (106-day) period, the angular momentum flux flowing through it must be sufficiently small that any modulation of the total angular momentum is mostly due to its coupling with the black-hole spin. This requires that the torque exerted on the inner boundary of the disk via magnetic stresses is close to the angular momentum accretion rate associated with the infalling gas. Significant heating at the inner edge of the disk then leaves the gas marginally bounded near the black hole. A strong wind from the central region may ensue and produce a scaled down version of relativistic (possibly magnetized) jets in AGNs. [source] Singlet Energy Dissipation in the Photosystem II Light-Harvesting Complex Does Not Involve Energy Transfer to CarotenoidsCHEMPHYSCHEM, Issue 6 2010Marc G. Müller Dr. Abstract The energy dissipation mechanism in oligomers of the major light-harvesting complex II (LHC II) from Arabidopsis thaliana mutants npq1 and npq2, zeaxanthin-deficient and zeaxanthin-enriched, respectively, has been studied by femtosecond transient absorption. The kinetics obtained at different excitation intensities are compared and the implications of singlet,singlet annihilation are discussed. Under conditions where annihilation is absent, the two types of LHC II oligomers show distributive biexponential (bimodal) kinetics with lifetimes of ,5,20 ps and ,200,400 ps having transient spectra typical for chlorophyll excited states. The data can be described kinetically by a two-state compartment model involving only chlorophyll excited states. Evidence is provided that neither carotenoid excited nor carotenoid radical states are involved in the quenching mechanism at variance with earlier proposals. We propose instead that a chlorophyll,chlorophyll charge-transfer state is formed in LHC II oligomers which is an intermediate in the quenching process. The relevance to non-photochemical quenching in vivo is discussed. [source] Nonlinear Damping Identification in Precast Prestressed Reinforced Concrete BeamsCOMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, Issue 8 2009P. Franchetti Integrated static and dynamic experiments were carried out on three precast PRC beam specimens. The static loading induced different levels of damage to the beams. At each damage level, impulsive loading was applied to the beams and the free vibration response was measured. The dynamic response data were processed using different methods including the multi-input multi-output (MIMO) curve fitting and the Hilbert transform techniques. A strong correlation is observed between the level of concrete damage (cracks) and the amount of nonlinear energy dissipation that can be modeled by means of quadratic damping. The nonlinear damping can be extracted from the free vibration response for each vibration mode. The proposed method is suited for quality control when manufacturing precast PRC members, and can be further extended for in situ detection of damage in concrete structures under ambient vibration. [source] Dielectric Characteristics for Radio Frequency Waves in a Laboratory Dipole PlasmaCONTRIBUTIONS TO PLASMA PHYSICS, Issue 4 2006N. I. Grishanov Abstract Transverse and parallel dielectric permittivity elements have been derived for radio frequency waves in a laboratory dipole magnetic field plasma. Vlasov equation is resolved for both the trapped and untrapped particles as a boundary value problem to define their separate contributions to the dielectric tensor components. To estimate the wave power absorbed in the plasma volume the perturbed electric field and current density components are decomposed in a Fourier series over the poloidal angle. In this case, the dielectric characteristics can be analyzed independently of the solution of the Maxwell's equations. As usual, imaginary part of the parallel permittivity elements is necessary to estimate the electron Landau damping of radio frequency waves, whereas imaginary part of the transverse permittivity elements is important to estimate the wave dissipation by the cyclotron resonances. Computations of the imaginary part of the parallel permittivity elements are carried out in a wide range of the wave frequencies. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Vascular regression is required for mesenchymal condensation and chondrogenesis in the developing limbDEVELOPMENTAL DYNAMICS, Issue 3 2001Melinda Yin Abstract Vascular regression occurs during limb mesenchymal cell condensation and chondrogenesis, but it is unclear whether it is required for these processes or is a secondary phenomenon without major regulatory roles. To address this issue, beads presoaked with the potent angiogenic factor vascular endothelial growth factor (VEGF) were implanted in the vicinity of the prospective digit 2 in early chick embryo wing buds and the effects on angiogenesis and digit development were determined over time. We found that VEGF treatment caused a marked local increase in blood vessel number and density. Strikingly, this was accompanied by inhibition of digit 2 development as revealed by lack of expression of chondrogenic transcription factor Sox9 and absence of Alcian blue staining. Vascular distribution and skeletal development in adjacent areas remained largely unaffected. Inhibition of digit formation and excess vascularization were both reversible upon further embryonic growth and dissipation of VEGF activity. When supernumerary digits were induced at the anterior limb margin by retinoic acid treatment, their development was also preceded by vascular regression; interestingly, cotreatment with VEGF inhibited supernumerary digit development as well. Direct exposure of limb mesenchymal cells in micromass cultures to VEGF caused no obvious effects on condensation and chondrogenesis, indicating that VEGF effects are not due to direct action on skeletal cells. Our results are the first to provide evidence that vascular regression is required for mesenchymal condensation and chondrogenesis. A model of how patterning mechanisms and vascular regression may intersect and orchestrate limb skeletogenesis is proposed. © 2001 Wiley-Liss, Inc. [source] Flow energy and channel adjustments in rills developed in loamy sand and sandy loam soilsEARTH SURFACE PROCESSES AND LANDFORMS, Issue 1 2009Jovan R. Stefanovic Abstract The storms usually associated with rill development in nature are seldom prolonged, so development is often interrupted by interstorm disturbances, e.g. weathering or tillage. In laboratory simulated rainfall experiments, active rill development can be prolonged, and under these conditions typically passes through a period of intense incision, channel extension and bifurcation before reaching quasi-stable conditions in which little form change occurs. This paper presents laboratory experiments with coarse textured soils under simulated rainfall which show how channel adjustment processes contribute to the evolution of quasi-stability. Newly incised rills were stabilized for detailed study of links between rill configuration and flow energy. On a loamy sand, adjustment towards equilibrium occurred due to channel widening and meandering, whereas on a sandy loam, mobile knickpoints and chutes, pulsations in flow width and flow depth and changes in stream power and sediment discharge occurred as the channel adjusted towards equilibrium. The tendency of rill systems towards quasi-stability is shown by changes in stream power values which show short-lived minima. Differences in energy dissipation in stabilized rills indicate that minimization of energy dissipation was reached locally between knickpoints and at the downstream ends of rills. In the absence of energy gradients in knickpoints and chutes, stabilized rill sections tended toward equilibrium by establishing uniform energy expenditure. The study confirmed that energy dissipation increased with flow aspect ratio. In stabilized rills, flow acceleration reduced energy dissipation on the loamy sand but not on the sandy loam. On both soils flow deceleration tended to increase energy dissipation. Understanding how rill systems evolve towards stability is essential in order to predict how interruptions between storms may affect long-term rill dynamics. This is essential if event-based physical models are to become effective in predicting sediment transport on rilled hillslopes under changing weather and climatic conditions. Copyright © 2008 John Wiley and Sons, Ltd. [source] Modelling the hysteresis in the velocity pattern of slow-moving earth flows: the role of excess pore pressureEARTH SURFACE PROCESSES AND LANDFORMS, Issue 4 2005T. W. J. van Asch Abstract This paper describes the velocity pattern of a slow-moving earth flow containing a viscous shear band and a more or less rigid landslide body on top. In the case of small groundwater fluctuations, Bingham's law may describe the velocity of these slow-moving landslides, with velocity as a linear function of excess shear stress. Many authors have stated that in most cases a non-linear version of Bingham's law best describes the moving pattern of these earth flows. However, such an exponential relationship fails to describe the hysteresis loop of the velocity, which was found by some authors. These authors showed that the velocity of the investigated earth flows proved to be higher during the rising limb of the groundwater than during the falling limb. To explain the hysteris loop in the velocity pattern, this paper considers the role of excess pore pressure in the rheological behaviour of earth flows by means of a mechanistic model. It describes changes in lateral internal stresses due to a change in the velocity of the earth flow, which generates excess pore pressure followed by pore pressure dissipation. Model results are compared with a hysteresis in the velocity pattern, which was measured on the Valette landslide complex (French Alps). Copyright © 2005 John Wiley & Sons, Ltd. [source] The influence of pool length on local turbulence production and energy slope: a flume experimentEARTH SURFACE PROCESSES AND LANDFORMS, Issue 11 2004Douglas M. Thompson Abstract The in,uence of pool length on the strength of turbulence generated by vortex shedding was investigated in a 6 m long recirculating ,ume. The experiment utilized a 38% constriction of ,ow and an average channel-bed slope of 0·007. The base geometry for the intermediate-length pool experiment originated from a highly simpli,ed, 0·10 scale model of a forced pool from North Saint Vrain Creek, Colorado. Discharge in the ,ume was 31·6 l/s, which corresponds to a discharge in the prototype channel of 10 m3/s. Three shorter and four longer pool lengths also were created with a ,xed bed to determine changes in turbulence intensities and energy slope with pool elongation. Three-dimensional velocities were measured with an acoustic Doppler velocimeter at 31,40 different 0·6-depth and near-bed locations downstream of the rectangular constriction. The average velocity and root mean square (RMS) of the absolute magnitude of velocity at both depths are signi,cantly related to the distance from the constriction in most pool locations downstream of the constriction. In many locations, pool elongation results in a non-linear change in turbulence intensities and average velocity. Based on the overall ,ow pattern, the strongest turbulence occurs in the center of the pool along the shear zone between the jet and recirculating eddy. The lateral location of this shear zone is sensitive to changes in pool length. Energy slope also was sensitive to pool length due to a combination of greater length of the pool and greater head loss with shorter pools. The results indicate some form of hydraulic optimization is possible with pools adjusting their length to adjust the location and strength of turbulent intensities in the center of pools, and lower their rate of energy dissipation. Copyright © 2004 John Wiley & Sons, Ltd. [source] Self-centering structural systems with combination of hysteretic and viscous energy dissipationsEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 10 2010Weng Yuen Kam Abstract This paper presents an innovative set of high-seismic-resistant structural systems termed Advanced Flag-Shaped (AFS) systems, where self-centering elements are used with combinations of various alternative energy dissipation elements (hysteretic, viscous or visco-elasto-plastic) in series and/or in parallel. AFS systems is developed using the rationale of combining velocity-dependent with displacement-dependent energy dissipation for self-centering systems, particularly to counteract near-fault earthquakes. Non-linear time-history analyses (NLTHA) on a set of four single-degree-of-freedom (SDOF) systems under a suite of 20 far-field and 20 near-fault ground motions are used to compare the seismic performance of AFS systems with the conventional systems. It is shown that AFS systems with a combination in parallel of hysteretic and viscous energy dissipations achieved greater performance in terms of the three performance indices. Furthermore, the use of friction slip in series of viscous energy dissipation is shown to limit the peak response acceleration and induced base-shear. An extensive parametric analysis is carried out to investigate the influence of two design parameters, ,1 and ,2 on the response of SDOF AFS systems with initial periods ranging from 0.2 to 3.0,s and with various strength levels when subjected to far-field and near-fault earthquakes. For the design of self-centering systems with combined hysteretic and viscous energy dissipation (AFS) systems, ,1 is recommended to be in the range of 0.8,1.6 while ,2 to be between 0.25 and 0.75 to ensure sufficient self-centering and energy dissipation capacities, respectively. Copyright © 2010 John Wiley & Sons, Ltd. [source] Protection of seismic structures using semi-active friction TMDEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 6 2010Chi-Chang Lin Abstract Although the design and applications of linear tuned mass damper (TMD) systems are well developed, nonlinear TMD systems are still in the developing stage. Energy dissipation via friction mechanisms is an effective means for mitigating the vibration of seismic structures. A friction-type TMD, i.e. a nonlinear TMD, has the advantages of energy dissipation via a friction mechanism without requiring additional damping devices. However, a passive-friction TMD (PF-TMD) has such disadvantages as a fixed and pre-determined slip load and may lose its tuning and energy dissipation abilities when it is in the stick state. A novel semi-active-friction TMD (SAF-TMD) is used to overcome these disadvantages. The proposed SAF-TMD has the following features. (1) The frictional force of the SAF-TMD can be regulated in accordance with system responses. (2) The frictional force can be amplified via a braking mechanism. (3) A large TMD stroke can be utilized to enhance control performance. A non-sticking friction control law, which can keep the SAF-TMD activated throughout an earthquake with an arbitrary intensity, was applied. The performance of the PF-TMD and SAF-TMD systems in protecting seismic structures was investigated numerically. The results demonstrate that the SAF-TMD performs better than the PF-TMD and can prevent a residual stroke that may occur in a PF-TMD system. Copyright © 2009 John Wiley & Sons, Ltd. [source] Seismic performance of a 3D full-scale high-ductility steel,concrete composite moment-resisting structure,Part I: Design and testing procedureEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 14 2008A. Braconi Abstract A multi-level pseudo-dynamic (PSD) seismic test programme was performed on a full-scale three-bay two-storey steel,concrete composite moment-resisting frame built with partially encased composite columns and partial-strength connections. The system was designed to provide strength and ductility for earthquake resistance with energy dissipation located in ductile components of beam-to-column joints including flexural yielding of beam end-plates and shear yielding of the column web panel zone. In addition, the response of the frame depending on the column base yielding was analysed. Firstly, the design of the test structure is presented in the paper, with particular emphasis on the ductile detailing of beam-to-column joints. Details of the construction of the test structure and the test set-up are also given. The paper then provides a description of the non-linear static and dynamic analytical studies that were carried out to preliminary assess the seismic performance of the test structure and establish a comprehensive multi-level PSD seismic test programme. The resulting test protocol included the application of a spectrum-compatible earthquake ground motion scaled to four different peak ground acceleration levels to reproduce an elastic response as well as serviceability, ultimate, and collapse limit state conditions, respectively. Severe damage to the building was finally induced by a cyclic test with stepwise increasing displacement amplitudes. Copyright © 2008 John Wiley & Sons, Ltd. [source] A new family of generalized-, time integration algorithms without overshoot for structural dynamicsEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 12 2008Yu KaiPing Abstract A new family of generalized-, (G-,) algorithm without overshoot is presented by introducing seven free parameters into the single-step three-stage formulation for solution of structural dynamic problems. It is proved through finite difference analysis that these algorithms are unconditionally stable, second-order accurate and numerical dissipation controllable. The comparison of the new G-, algorithms with the commonly used G-, algorithms shows that the newly developed algorithms have the advantage of eliminating the overshooting characteristics exhibited by the commonly used algorithms while their excellent property of dissipation is preserved. The numerical simulation results obtained using a single-degree-of-freedom system and a two-degree-of-freedom system to represent the character of typical large systems coincide well with the results of theoretical analyses. Copyright © 2008 John Wiley & Sons, Ltd. [source] Spectral analysis and design approach for high force-to-volume extrusion damper-based structural energy dissipationEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 2 2008Geoffrey W. Rodgers Abstract High force-to-volume extrusion damping devices can offer significant energy dissipation directly in structural connections and significantly reduce seismic response. Realistic force levels up to 400,kN have been obtained experimentally validating this overall concept. This paper develops spectral-based design equations for their application. Response spectra analysis for multiple, probabilistically scaled earthquake suites are used to delineate the response reductions due to added extrusion damping. Representative statistics and damping reduction factors are utilized to characterize the modified response in a form suitable for current performance-based design methods. Multiple equation regression analysis is used to characterize reduction factors in the constant acceleration, constant velocity, and constant displacement regions of the response spectra. With peak device forces of 10% of structural weight, peak damping reduction factors in the constant displacement region of the spectra are approximately 6.5,×, 4.0,×, and 2.8,× for the low, medium, and high suites, respectively. At T,=,1,s, these values are approximately 3.6,×, 1.8,×, and 1.4,×, respectively. The maximum systematic bias introduced by using empirical equations to approximate damping reduction factors in design analyses is within the range of +10 to ,20%. The seismic demand spectrum approach is shown to be conservative across a majority of the spectrum, except for large added damping between T,=,0.8 and 3.5,s, where it slightly underestimates the demand up to a maximum of approximately 10%. Overall, the analysis shows that these devices have significant potential to reduce seismic response and damage at validated prototype device force levels. Copyright © 2007 John Wiley & Sons, Ltd. [source] Practical causal hysteretic dampingEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 5 2007Naohiro Nakamura Abstract A number of experiments indicate that the internal damping corresponding to the energy dissipation of many materials is essentially frequency independent. Accordingly, an analysis model that can express such characteristics (called a hysteretic damping model) in the time domain is needed. Although a great number of investigations into this subject have been carried out, there are a few practical methods. In this paper, a simple hysteretic damping model which satisfies the causality condition is presented using an extension of the complex stiffness transfer method that the author has proposed. Compared with the energy proportional damping model and the Biot model, the applicability and the efficiency of this model to time history response analyses were confirmed well by example problems. Copyright © 2006 John Wiley & Sons, Ltd. [source] Uplift-restraining Friction Pendulum seismic isolation systemEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 5 2006Panayiotis C. Roussis Abstract This paper extends the scope of seismic isolation by introducing an innovative uplift-restraining Friction Pendulum system. Termed the XY-FP isolator, the new isolation device consists of two orthogonal opposing concave beams interconnected through a sliding mechanism that permits tension to develop in the bearing, thereby preventing uplift. Owing to its distinct configuration, the XY-FP isolator possesses unique properties for a seismic isolator, including uplift restraint, decoupling of the bi-directional motion along two orthogonal directions, and capability of providing independent stiffness and energy dissipation along the principal horizontal directions of the bearing. The study concentrates on introducing the concept and establishing the underlying principles of operation of the new XY-FP isolator, formulating the mathematical model for the XY-FP isolator, and presenting its mechanical behaviour through a displacement-control testing program on a single XY-FP isolator. Copyright © 2005 John Wiley & Sons, Ltd. [source] Cyclic tests of post-tensioned precast CFT segmental bridge columns with unbonded strandsEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 2 2006Chung-Che Chou Abstract Two ungrouted post-tensioned, precast concrete-filled tube (CFT) segmental bridge columns were tested under lateral cyclic loading to evaluate the seismic performance of the column details. The specimens included a load stub, four equal-height circular CFT segments, and a footing. Strands were placed through the column and post-tensioned to provide a precompression of the column against the footing. One specimen also contained energy-dissipating devices at the base to increase the hysteretic energy. The test results showed that (1) both specimens could develop the maximum flexural strength at the design drift and achieve 6% drift with small strength degradation and residual displacement, (2) the proposed energy-dissipating device could increase energy dissipation in the hysteresis loops, and (3) the CFT segmental columns rotated not only about the base but also about the interface above the bottom segment. This study proposed and verified a method to estimate the experimental flexural displacement using two plastic hinges in the segmental column. Copyright © 2005 John Wiley & Sons, Ltd. [source] Evolutionary aseismic design and retrofit of structures with passive energy dissipationEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 13 2005G. F. Dargush Abstract A new computational framework is developed for the design and retrofit of building structures by considering aseismic design as a complex adaptive process. For the initial phase of the development within this framework, genetic algorithms are employed for the discrete optimization of passively damped structural systems. The passive elements may include metallic plate dampers, viscous fluid dampers and viscoelastic solid dampers. The primary objective is to determine robust designs, including both the non-linearity of the structural system and the uncertainty of the seismic environment. Within the present paper, this computational design approach is applied to a series of model problems, involving sizing and placement of passive dampers for energy dissipation. In order to facilitate our investigations and provide a baseline for further study, we introduce several simplifications for these initial examples. In particular, we employ deterministic lumped parameter structural models, memoryless fitness function definitions and hypothetical seismic environments. Despite these restrictions, some interesting results are obtained from the simulations and we are able to gain an understanding of the potential for the proposed evolutionary aseismic design methodology. Copyright © 2005 John Wiley & Sons, Ltd. [source] Damaging properties of ground motions and prediction of maximum response of structures based on momentary energy responseEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 9 2002Norio Hori Abstract Dynamic damaging potential of ground motions must be evaluated by the response behaviour of structures, and it is necessary to indicate what properties of ground motions are most appropriate for evaluation. For that purpose, the behaviour of energy input process and hysteretic energy dissipation are investigated in this study. It is found that the momentary input energy that is an index for the intensity of input energy is related to the characteristics of earthquakes such as cyclic or impulsive, and to the response displacement of structures immediately. On the basis of these results, a procedure is proposed to predict inelastic response displacement of structures by corresponding earthquake input energy to structural dissipated damping and hysteretic energy. In this procedure the earthquake response of structures is recognized as an input and dissipation process of energy, and therefore structural properties and damaging properties of ground motions can be taken into account more generally. Lastly, the studies of the pseudodynamic loading test of reinforced concrete structure specimens subjected to ground motions with different time duration are shown. The purpose of this test is to estimate the damaging properties of ground motions and the accuracy of the proposed prediction procedure. Copyright © 2002 John Wiley & Sons, Ltd. [source] Comparative response analysis of conventional and innovative seismic protection strategiesEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 5 2002S. Bruno Abstract The paper presents a numerical investigation aimed at evaluating the improvements achievable through devices for passive seismic protection of buildings based on the use of shape memory alloys (SMA) in place of conventional steel or rubber devices. To get some generality in the results, different resisting reinforced concrete plane frames were analysed, either protected or not. ,New' and ,existing' buildings were considered depending on whether seismic provisions are adopted in the building design or not. Base isolation and energy dissipation were equally addressed for both conventional and innovative SMA-based devices. Fragility analyses were performed using specific damage measures to account for comparisons among different damage types; the results were then used to estimate quantitatively the effectiveness of the various protection systems. More specifically, the assessment involved a direct comparison of the damage reduction provided by each protection system with respect to the severe degradation experienced by the corresponding non-protected frame. Structural damage, non-structural damage and damage to contents were used on purpose and included in a subsequent phase of cost analysis to evaluate the expected gains also in terms of economic benefits and life loss prevention. The results indicate that base isolation, when applicable, provides higher degrees of safety than energy dissipation does; moreover, the use of SMA-based devices generally brings about better performances, also in consideration of the reduced functional and maintenance requirements. Copyright © 2002 John Wiley & Sons, Ltd. [source] Internal electrolyte temperatures for polymer and fused-silica capillaries used in capillary electrophoresisELECTROPHORESIS, Issue 22 2005Christopher J. Evenhuis Abstract Polymers are important as materials for manufacturing microfluidic devices for electrodriven separations, in which Joule heating is an unavoidable phenomenon. Heating effects were investigated in polymer capillaries using a CE setup. This study is the first step toward the longer-term objective of the study of heating effects occurring in polymeric microfluidic devices. The thermal conductivity of polymers is much smaller than that of fused silica (FS), resulting in less efficient dissipation of heat in polymeric capillaries. This study used conductance measurements as a temperature probe to determine the mean electrolyte temperatures in CE capillaries of different materials. Values for mean electrolyte temperatures in capillaries made of New Generation FluoroPolymer (NGFP), poly-(methylmethacrylate) (PMMA), and poly(ether ether ketone) (PEEK) capillaries were compared with those obtained for FS capillaries. Extrapolation of plots of conductance versus power per unit length (P/L) to zero power was used to obtain conductance values free of Joule heating effects. The ratio of the measured conductance values at different power levels to the conductance at zero power was used to determine the mean temperature of the electrolyte. For each type of capillary material, it was found that the average increase in the mean temperature of the electrolyte (,TMean) was directly proportional to P/L and inversely proportional to the thermal conductivity (,) of the capillary material. At 7.5,W/m, values for ,TMean for NGFP, PMMA, and PEEK were determined to be 36.6, 33.8, and 30.7°C, respectively. Under identical conditions, ,TMean for FS capillaries was 20.4°C. [source] Thermodynamic Analysis of Energy Transfer in Acidogenic CulturesENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 5 2008J.-R. Bastidas-Oyanedel Abstract A global thermodynamic analysis, normally used for pure cultures, has been performed for steady-state data sets from acidogenic mixed cultures. This analysis is a combination of two different thermodynamic approaches, based on tabulated standard Gibbs energy of formation, global stoichiometry and medium compositions. It takes into account the energy transfer efficiency, ,, together with the Gibbs free energy dissipation, ,Go, analysis of the different data. The objective is to describe these systems thermodynamically without any heat measurement. The results show that , is influenced by environmental conditions, where increasing hydraulic retention time increases its value all cases. The pH effect on , is related to metabolic shifts and osmoregulation. Within the environmental conditions analyzed, , ranges from 0.23 for a hydraulic retention time of 20,h and pH,4, to 0.42 for a hydraulic retention time of 8,h and a pH ranging from 7,8.5. The estimated values of ,Go are comparable to standard Gibbs energy of dissipation reported in the literature. For the data sets analyzed, ,Go ranges from ,1210,kJ/molx, corresponding to a stirring velocity of 300,rpm, pH,6 and a hydraulic retention time of 6,h, to ,20744,kJ/molx for pH,4 and a hydraulic retention time of 20,h. For average conclusions, the combined approach based on standard Gibbs energy of formation and global stoichiometry, used in this thermodynamic analysis, allows for the estimation of Gibbs energy dissipation values from the extracellular medium compositions in acidogenic mixed cultures. Such estimated values are comparable to the standard Gibbs energy dissipation values reported in the literature. It is demonstrated that , is affected by the environmental conditions, i.e., stirring velocity, hydraulic retention time and pH. However, a relationship that relates this parameter to environmental conditions was not found and will be the focus of further research. [source] |