Disequilibrium Test (disequilibrium + test)

Distribution by Scientific Domains

Kinds of Disequilibrium Test

  • transmission disequilibrium test


  • Selected Abstracts


    Informative-Transmission Disequilibrium Test (i-TDT): combined linkage and association mapping that includes unaffected offspring as well as affected offspring

    GENETIC EPIDEMIOLOGY, Issue 2 2007
    Chao-Yu Guo
    Abstract To date, there is no test valid for the composite null hypothesis of no linkage or no association that utilizes transmission information from heterozygous parents to their unaffected offspring as well as the affected offspring from ascertained nuclear families. Since the unaffected siblings also provide information about linkage and association, we introduce a new strategy called the informative-transmission disequilibrium test (i-TDT), which uses transmission information from heterozygous parents to all of the affected and unaffected offspring in ascertained nuclear families and provides a valid chi-square test for both linkage and association. The i-TDT can be used in various study designs and can accommodate all types of independent nuclear families with at least one affected offspring. We show that the transmission/disequilibrium test (TDT) (Spielman et al. [1993] Am. J. Hum. Genet. 52:506,516) is a special case of the i-TDT, if the study sample contains only case-parent trios. If the sample contains only affected and unaffected offspring without parental genotypes, the i-TDT is equivalent to the sibship disequilibrium test (SDT) (Horvath and Laird [1998] Am. J. Hum. Genet. 63:1886,1897. In addition, the test statistic of i-TDT is simple, explicit and can be implemented easily without intensive computing. Through computer simulations, we demonstrate that power of the i-TDT can be higher in many circumstances compared to a method that uses affected offspring only. Applying the i-TDT to the Framingham Heart Study data, we found that the apolipoprotein E (APOE) gene is significantly linked and associated with cross-sectional measures and longitudinal changes in total cholesterol. Genet. Epidemiol. © 2006 Wiley-Liss, Inc. [source]


    A novel method to identify gene,gene effects in nuclear families: the MDR-PDT

    GENETIC EPIDEMIOLOGY, Issue 2 2006
    E.R. Martin
    Abstract It is now well recognized that gene,gene and gene,environment interactions are important in complex diseases, and statistical methods to detect interactions are becoming widespread. Traditional parametric approaches are limited in their ability to detect high-order interactions and handle sparse data, and standard stepwise procedures may miss interactions that occur in the absence of detectable main effects. To address these limitations, the multifactor dimensionality reduction (MDR) method [Ritchie et al., 2001: Am J Hum Genet 69:138,147] was developed. The MDR is wellsuited for examining high-order interactions and detecting interactions without main effects. The MDR was originally designed to analyze balanced case-control data. The analysis can use family data, but requires a single matched pair be selected from each family. This may be a discordant sib pair, or may be constructed from triad data when parents are available. To take advantage of additional affected and unaffected siblings requires a test statistic that measures the association of genotype with disease in general nuclear families. We have developed a novel test, the MDR-PDT, by merging the MDR method with the genotype-Pedigree Disequilibrium Test (geno-PDT)[Martin et al., 2003: Genet Epidemiol 25:203,213]. MDR-PDT allows identification of single-locus effects or joint effects of multiple loci in families of diverse structure. We present simulations to demonstrate the validity of the test and evaluate its power. To examine its applicability to real data, we applied the MDR-PDT to data from candidate genes for Alzheimer disease (AD) in a large family dataset. These results show the utility of the MDR-PDT for understanding the genetics of complex diseases. Genet. Epidemiol. 2006. © 2005 Wiley-Liss, Inc. [source]


    European Mathematical Genetics Meeting, Heidelberg, Germany, 12th,13th April 2007

    ANNALS OF HUMAN GENETICS, Issue 4 2007
    Article first published online: 28 MAY 200
    Saurabh Ghosh 11 Indian Statistical Institute, Kolkata, India High correlations between two quantitative traits may be either due to common genetic factors or common environmental factors or a combination of both. In this study, we develop statistical methods to extract the contribution of a common QTL to the total correlation between the components of a bivariate phenotype. Using data on bivariate phenotypes and marker genotypes for sib-pairs, we propose a test for linkage between a common QTL and a marker locus based on the conditional cross-sib trait correlations (trait 1 of sib 1 , trait 2 of sib 2 and conversely) given the identity-by-descent sharing at the marker locus. The null hypothesis cannot be rejected unless there exists a common QTL. We use Monte-Carlo simulations to evaluate the performance of the proposed test under different trait parameters and quantitative trait distributions. An application of the method is illustrated using data on two alcohol-related phenotypes from the Collaborative Study On The Genetics Of Alcoholism project. Rémi Kazma 1 , Catherine Bonaďti-Pellié 1 , Emmanuelle Génin 12 INSERM UMR-S535 and Université Paris Sud, Villejuif, 94817, France Keywords: Gene-environment interaction, sibling recurrence risk, exposure correlation Gene-environment interactions may play important roles in complex disease susceptibility but their detection is often difficult. Here we show how gene-environment interactions can be detected by investigating the degree of familial aggregation according to the exposure of the probands. In case of gene-environment interaction, the distribution of genotypes of affected individuals, and consequently the risk in relatives, depends on their exposure. We developed a test comparing the risks in sibs according to the proband exposure. To evaluate the properties of this new test, we derived the formulas for calculating the expected risks in sibs according to the exposure of probands for various values of exposure frequency, relative risk due to exposure alone, frequencies of latent susceptibility genotypes, genetic relative risks and interaction coefficients. We find that the ratio of risks when the proband is exposed and not exposed is a good indicator of the interaction effect. We evaluate the power of the test for various sample sizes of affected individuals. We conclude that this test is valuable for diseases with moderate familial aggregation, only when the role of the exposure has been clearly evidenced. Since a correlation for exposure among sibs might lead to a difference in risks among sibs in the different proband exposure strata, we also add an exposure correlation coefficient in the model. Interestingly, we find that when this correlation is correctly accounted for, the power of the test is not decreased and might even be significantly increased. Andrea Callegaro 1 , Hans J.C. Van Houwelingen 1 , Jeanine Houwing-Duistermaat 13 Dept. of Medical Statistics and Bioinformatics, Leiden University Medical Center, The Netherlands Keywords: Survival analysis, age at onset, score test, linkage analysis Non parametric linkage (NPL) analysis compares the identical by descent (IBD) sharing in sibling pairs to the expected IBD sharing under the hypothesis of no linkage. Often information is available on the marginal cumulative hazards (for example breast cancer incidence curves). Our aim is to extend the NPL methods by taking into account the age at onset of selected sibling pairs using these known marginal hazards. Li and Zhong (2002) proposed a (retrospective) likelihood ratio test based on an additive frailty model for genetic linkage analysis. From their model we derive a score statistic for selected samples which turns out to be a weighed NPL method. The weights depend on the marginal cumulative hazards and on the frailty parameter. A second approach is based on a simple gamma shared frailty model. Here, we simply test whether the score function of the frailty parameter depends on the excess IBD. We compare the performance of these methods using simulated data. Céline Bellenguez 1 , Carole Ober 2 , Catherine Bourgain 14 INSERM U535 and University Paris Sud, Villejuif, France 5 Department of Human Genetics, The University of Chicago, USA Keywords: Linkage analysis, linkage disequilibrium, high density SNP data Compared with microsatellite markers, high density SNP maps should be more informative for linkage analyses. However, because they are much closer, SNPs present important linkage disequilibrium (LD), which biases classical nonparametric multipoint analyses. This problem is even stronger in population isolates where LD extends over larger regions with a more stochastic pattern. We investigate the issue of linkage analysis with a 500K SNP map in a large and inbred 1840-member Hutterite pedigree, phenotyped for asthma. Using an efficient pedigree breaking strategy, we first identified linked regions with a 5cM microsatellite map, on which we focused to evaluate the SNP map. The only method that models LD in the NPL analysis is limited in both the pedigree size and the number of markers (Abecasis and Wigginton, 2005) and therefore could not be used. Instead, we studied methods that identify sets of SNPs with maximum linkage information content in our pedigree and no LD-driven bias. Both algorithms that directly remove pairs of SNPs in high LD and clustering methods were evaluated. Null simulations were performed to control that Zlr calculated with the SNP sets were not falsely inflated. Preliminary results suggest that although LD is strong in such populations, linkage information content slightly better than that of microsatellite maps can be extracted from dense SNP maps, provided that a careful marker selection is conducted. In particular, we show that the specific LD pattern requires considering LD between a wide range of marker pairs rather than only in predefined blocks. Peter Van Loo 1,2,3 , Stein Aerts 1,2 , Diether Lambrechts 4,5 , Bernard Thienpont 2 , Sunit Maity 4,5 , Bert Coessens 3 , Frederik De Smet 4,5 , Leon-Charles Tranchevent 3 , Bart De Moor 2 , Koen Devriendt 3 , Peter Marynen 1,2 , Bassem Hassan 1,2 , Peter Carmeliet 4,5 , Yves Moreau 36 Department of Molecular and Developmental Genetics, VIB, Belgium 7 Department of Human Genetics, University of Leuven, Belgium 8 Bioinformatics group, Department of Electrical Engineering, University of Leuven, Belgium 9 Department of Transgene Technology and Gene Therapy, VIB, Belgium 10 Center for Transgene Technology and Gene Therapy, University of Leuven, Belgium Keywords: Bioinformatics, gene prioritization, data fusion The identification of genes involved in health and disease remains a formidable challenge. Here, we describe a novel bioinformatics method to prioritize candidate genes underlying pathways or diseases, based on their similarity to genes known to be involved in these processes. It is freely accessible as an interactive software tool, ENDEAVOUR, at http://www.esat.kuleuven.be/endeavour. Unlike previous methods, ENDEAVOUR generates distinct prioritizations from multiple heterogeneous data sources, which are then integrated, or fused, into one global ranking using order statistics. ENDEAVOUR prioritizes candidate genes in a three-step process. First, information about a disease or pathway is gathered from a set of known "training" genes by consulting multiple data sources. Next, the candidate genes are ranked based on similarity with the training properties obtained in the first step, resulting in one prioritized list for each data source. Finally, ENDEAVOUR fuses each of these rankings into a single global ranking, providing an overall prioritization of the candidate genes. Validation of ENDEAVOUR revealed it was able to efficiently prioritize 627 genes in disease data sets and 76 genes in biological pathway sets, identify candidates of 16 mono- or polygenic diseases, and discover regulatory genes of myeloid differentiation. Furthermore, the approach identified YPEL1 as a novel gene involved in craniofacial development from a 2-Mb chromosomal region, deleted in some patients with DiGeorge-like birth defects. Finally, we are currently evaluating a pipeline combining array-CGH, ENDEAVOUR and in vivo validation in zebrafish to identify novel genes involved in congenital heart defects. Mark Broom 1 , Graeme Ruxton 2 , Rebecca Kilner 311 Mathematics Dept., University of Sussex, UK 12 Division of Environmental and Evolutionary Biology, University of Glasgow, UK 13 Department of Zoology, University of Cambridge, UK Keywords: Evolutionarily stable strategy, parasitism, asymmetric game Brood parasites chicks vary in the harm that they do to their companions in the nest. In this presentation we use game-theoretic methods to model this variation. Our model considers hosts which potentially abandon single nestlings and instead choose to re-allocate their reproductive effort to future breeding, irrespective of whether the abandoned chick is the host's young or a brood parasite's. The parasite chick must decide whether or not to kill host young by balancing the benefits from reduced competition in the nest against the risk of desertion by host parents. The model predicts that three different types of evolutionarily stable strategies can exist. (1) Hosts routinely rear depleted broods, the brood parasite always kills host young and the host never then abandons the nest. (2) When adult survival after deserting single offspring is very high, hosts always abandon broods of a single nestling and the parasite never kills host offspring, effectively holding them as hostages to prevent nest desertion. (3) Intermediate strategies, in which parasites sometimes kill their nest-mates and host parents sometimes desert nests that contain only a single chick, can also be evolutionarily stable. We provide quantitative descriptions of how the values given to ecological and behavioral parameters of the host-parasite system influence the likelihood of each strategy and compare our results with real host-brood parasite associations in nature. Martin Harrison 114 Mathematics Dept, University of Sussex, UK Keywords: Brood parasitism, games, host, parasite The interaction between hosts and parasites in bird populations has been studied extensively. Game theoretical methods have been used to model this interaction previously, but this has not been studied extensively taking into account the sequential nature of this game. We consider a model allowing the host and parasite to make a number of decisions, which depend on a number of natural factors. The host lays an egg, a parasite bird will arrive at the nest with a certain probability and then chooses to destroy a number of the host eggs and lay one of it's own. With some destruction occurring, either natural or through the actions of the parasite, the host chooses to continue, eject an egg (hoping to eject the parasite) or abandon the nest. Once the eggs have hatched the game then falls to the parasite chick versus the host. The chick chooses to destroy or eject a number of eggs. The final decision is made by the host, choosing whether to raise or abandon the chicks that are in the nest. We consider various natural parameters and probabilities which influence these decisions. We then use this model to look at real-world situations of the interactions of the Reed Warbler and two different parasites, the Common Cuckoo and the Brown-Headed Cowbird. These two parasites have different methods in the way that they parasitize the nests of their hosts. The hosts in turn have a different reaction to these parasites. Arne Jochens 1 , Amke Caliebe 2 , Uwe Roesler 1 , Michael Krawczak 215 Mathematical Seminar, University of Kiel, Germany 16 Institute of Medical Informatics and Statistics, University of Kiel, Germany Keywords: Stepwise mutation model, microsatellite, recursion equation, temporal behaviour We consider the stepwise mutation model which occurs, e.g., in microsatellite loci. Let X(t,i) denote the allelic state of individual i at time t. We compute expectation, variance and covariance of X(t,i), i=1,,,N, and provide a recursion equation for P(X(t,i)=z). Because the variance of X(t,i) goes to infinity as t grows, for the description of the temporal behaviour, we regard the scaled process X(t,i)-X(t,1). The results furnish a better understanding of the behaviour of the stepwise mutation model and may in future be used to derive tests for neutrality under this model. Paul O'Reilly 1 , Ewan Birney 2 , David Balding 117 Statistical Genetics, Department of Epidemiology and Public Health, Imperial, College London, UK 18 European Bioinformatics Institute, EMBL, Cambridge, UK Keywords: Positive selection, Recombination rate, LD, Genome-wide, Natural Selection In recent years efforts to develop population genetics methods that estimate rates of recombination and levels of natural selection in the human genome have intensified. However, since the two processes have an intimately related impact on genetic variation their inference is vulnerable to confounding. Genomic regions subject to recent selection are likely to have a relatively recent common ancestor and consequently less opportunity for historical recombinations that are detectable in contemporary populations. Here we show that selection can reduce the population-based recombination rate estimate substantially. In genome-wide studies for detecting selection we observe a tendency to highlight loci that are subject to low levels of recombination. We find that the outlier approach commonly adopted in such studies may have low power unless variable recombination is accounted for. We introduce a new genome-wide method for detecting selection that exploits the sensitivity to recent selection of methods for estimating recombination rates, while accounting for variable recombination using pedigree data. Through simulations we demonstrate the high power of the Ped/Pop approach to discriminate between neutral and adaptive evolution, particularly in the context of choosing outliers from a genome-wide distribution. Although methods have been developed showing good power to detect selection ,in action', the corresponding window of opportunity is small. In contrast, the power of the Ped/Pop method is maintained for many generations after the fixation of an advantageous variant Sarah Griffiths 1 , Frank Dudbridge 120 MRC Biostatistics Unit, Cambridge, UK Keywords: Genetic association, multimarker tag, haplotype, likelihood analysis In association studies it is generally too expensive to genotype all variants in all subjects. We can exploit linkage disequilibrium between SNPs to select a subset that captures the variation in a training data set obtained either through direct resequencing or a public resource such as the HapMap. These ,tag SNPs' are then genotyped in the whole sample. Multimarker tagging is a more aggressive adaptation of pairwise tagging that allows for combinations of two or more tag SNPs to predict an untyped SNP. Here we describe a new method for directly testing the association of an untyped SNP using a multimarker tag. Previously, other investigators have suggested testing a specific tag haplotype, or performing a weighted analysis using weights derived from the training data. However these approaches do not properly account for the imperfect correlation between the tag haplotype and the untyped SNP. Here we describe a straightforward approach to testing untyped SNPs using a missing-data likelihood analysis, including the tag markers as nuisance parameters. The training data is stacked on top of the main body of genotype data so there is information on how the tag markers predict the genotype of the untyped SNP. The uncertainty in this prediction is automatically taken into account in the likelihood analysis. This approach yields more power and also a more accurate prediction of the odds ratio of the untyped SNP. Anke Schulz 1 , Christine Fischer 2 , Jenny Chang-Claude 1 , Lars Beckmann 121 Division of Cancer Epidemiology, German Cancer Research Center (DKFZ) Heidelberg, Germany 22 Institute of Human Genetics, University of Heidelberg, Germany Keywords: Haplotype, haplotype sharing, entropy, Mantel statistics, marker selection We previously introduced a new method to map genes involved in complex diseases, using haplotype sharing-based Mantel statistics to correlate genetic and phenotypic similarity. Although the Mantel statistic is powerful in narrowing down candidate regions, the precise localization of a gene is hampered in genomic regions where linkage disequilibrium is so high that neighboring markers are found to be significant at similar magnitude and we are not able to discriminate between them. Here, we present a new approach to localize susceptibility genes by combining haplotype sharing-based Mantel statistics with an iterative entropy-based marker selection algorithm. For each marker at which the Mantel statistic is evaluated, the algorithm selects a subset of surrounding markers. The subset is chosen to maximize multilocus linkage disequilibrium, which is measured by the normalized entropy difference introduced by Nothnagel et al. (2002). We evaluated the algorithm with respect to type I error and power. Its ability to localize the disease variant was compared to the localization (i) without marker selection and (ii) considering haplotype block structure. Case-control samples were simulated from a set of 18 haplotypes, consisting of 15 SNPs in two haplotype blocks. The new algorithm gave correct type I error and yielded similar power to detect the disease locus compared to the alternative approaches. The neighboring markers were clearly less often significant than the causal locus, and also less often significant compared to the alternative approaches. Thus the new algorithm improved the precision of the localization of susceptibility genes. Mark M. Iles 123 Section of Epidemiology and Biostatistics, LIMM, University of Leeds, UK Keywords: tSNP, tagging, association, HapMap Tagging SNPs (tSNPs) are commonly used to capture genetic diversity cost-effectively. However, it is important that the efficacy of tSNPs is correctly estimated, otherwise coverage may be insufficient. If the pilot sample from which tSNPs are chosen is too small or the initial marker map too sparse, tSNP efficacy may be overestimated. An existing estimation method based on bootstrapping goes some way to correct for insufficient sample size and overfitting, but does not completely solve the problem. We describe a novel method, based on exclusion of haplotypes, that improves on the bootstrap approach. Using simulated data, the extent of the sample size problem is investigated and the performance of the bootstrap and the novel method are compared. We incorporate an existing method adjusting for marker density by ,SNP-dropping'. We find that insufficient sample size can cause large overestimates in tSNP efficacy, even with as many as 100 individuals, and the problem worsens as the region studied increases in size. Both the bootstrap and novel method correct much of this overestimate, with our novel method consistently outperforming the bootstrap method. We conclude that a combination of insufficient sample size and overfitting may lead to overestimation of tSNP efficacy and underpowering of studies based on tSNPs. Our novel approach corrects for much of this bias and is superior to the previous method. Sample sizes larger than previously suggested may still be required for accurate estimation of tSNP efficacy. This has obvious ramifications for the selection of tSNPs from HapMap data. Claudio Verzilli 1 , Juliet Chapman 1 , Aroon Hingorani 2 , Juan Pablo-Casas 1 , Tina Shah 2 , Liam Smeeth 1 , John Whittaker 124 Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, UK 25 Division of Medicine, University College London, UK Keywords: Meta-analysis, Genetic association studies We present a Bayesian hierarchical model for the meta-analysis of candidate gene studies with a continuous outcome. Such studies often report results from association tests for different, possibly study-specific and non-overlapping markers (typically SNPs) in the same genetic region. Meta analyses of the results at each marker in isolation are seldom appropriate as they ignore the correlation that may exist between markers due to linkage disequlibrium (LD) and cannot assess the relative importance of variants at each marker. Also such marker-wise meta analyses are restricted to only those studies that have typed the marker in question, with a potential loss of power. A better strategy is one which incorporates information about the LD between markers so that any combined estimate of the effect of each variant is corrected for the effect of other variants, as in multiple regression. Here we develop a Bayesian hierarchical linear regression that models the observed genotype group means and uses pairwise LD measurements between markers as prior information to make posterior inference on adjusted effects. The approach is applied to the meta analysis of 24 studies assessing the effect of 7 variants in the C-reactive protein (CRP) gene region on plasma CRP levels, an inflammatory biomarker shown in observational studies to be positively associated with cardiovascular disease. Cathryn M. Lewis 1 , Christopher G. Mathew 1 , Theresa M. Marteau 226 Dept. of Medical and Molecular Genetics, King's College London, UK 27 Department of Psychology, King's College London, UK Keywords: Risk, genetics, CARD15, smoking, model Recently progress has been made in identifying mutations that confer susceptibility to complex diseases, with the potential to use these mutations in determining disease risk. We developed methods to estimate disease risk based on genotype relative risks (for a gene G), exposure to an environmental factor (E), and family history (with recurrence risk ,R for a relative of type R). ,R must be partitioned into the risk due to G (which is modelled independently) and the residual risk. The risk model was then applied to Crohn's disease (CD), a severe gastrointestinal disease for which smoking increases disease risk approximately 2-fold, and mutations in CARD15 confer increased risks of 2.25 (for carriers of a single mutation) and 9.3 (for carriers of two mutations). CARD15 accounts for only a small proportion of the genetic component of CD, with a gene-specific ,S, CARD15 of 1.16, from a total sibling relative risk of ,S= 27. CD risks were estimated for high-risk individuals who are siblings of a CD case, and who also smoke. The CD risk to such individuals who carry two CARD15 mutations is approximately 0.34, and for those carrying a single CARD15 mutation the risk is 0.08, compared to a population prevalence of approximately 0.001. These results imply that complex disease genes may be valuable in estimating with greater precision than has hitherto been possible disease risks in specific, easily identified subgroups of the population with a view to prevention. Yurii Aulchenko 128 Department of Epidemiology & Biostatistics, Erasmus Medical Centre Rotterdam, The Netherlands Keywords: Compression, information, bzip2, genome-wide SNP data, statistical genetics With advances in molecular technology, studies accessing millions of genetic polymorphisms in thousands of study subjects will soon become common. Such studies generate large amounts of data, whose effective storage and management is a challenge to the modern statistical genetics. Standard file compression utilities, such as Zip, Gzip and Bzip2, may be helpful to minimise the storage requirements. Less obvious is the fact that the data compression techniques may be also used in the analysis of genetic data. It is known that the efficiency of a particular compression algorithm depends on the probability structure of the data. In this work, we compared different standard and customised tools using the data from human HapMap project. Secondly, we investigate the potential uses of data compression techniques for the analysis of linkage, association and linkage disequilibrium Suzanne Leal 1 , Bingshan Li 129 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA Keywords: Consanguineous pedigrees, missing genotype data Missing genotype data can increase false-positive evidence for linkage when either parametric or nonparametric analysis is carried out ignoring intermarker linkage disequilibrium (LD). Previously it was demonstrated by Huang et al (2005) that no bias occurs in this situation for affected sib-pairs with unrelated parents when either both parents are genotyped or genotype data is available for two additional unaffected siblings when parental genotypes are missing. However, this is not the case for consanguineous pedigrees, where missing genotype data for any pedigree member within a consanguinity loop can increase false-positive evidence of linkage. The false-positive evidence for linkage is further increased when cryptic consanguinity is present. The amount of false-positive evidence for linkage is highly dependent on which family members are genotyped. When parental genotype data is available, the false-positive evidence for linkage is usually not as strong as when parental genotype data is unavailable. Which family members will aid in the reduction of false-positive evidence of linkage is highly dependent on which other family members are genotyped. For a pedigree with an affected proband whose first-cousin parents have been genotyped, further reduction in the false-positive evidence of linkage can be obtained by including genotype data from additional affected siblings of the proband or genotype data from the proband's sibling-grandparents. When parental genotypes are not available, false-positive evidence for linkage can be reduced by including in the analysis genotype data from either unaffected siblings of the proband or the proband's married-in-grandparents. Najaf Amin 1 , Yurii Aulchenko 130 Department of Epidemiology & Biostatistics, Erasmus Medical Centre Rotterdam, The Netherlands Keywords: Genomic Control, pedigree structure, quantitative traits The Genomic Control (GC) method was originally developed to control for population stratification and cryptic relatedness in association studies. This method assumes that the effect of population substructure on the test statistics is essentially constant across the genome, and therefore unassociated markers can be used to estimate the effect of confounding onto the test statistic. The properties of GC method were extensively investigated for different stratification scenarios, and compared to alternative methods, such as the transmission-disequilibrium test. The potential of this method to correct not for occasional cryptic relations, but for regular pedigree structure, however, was not investigated before. In this work we investigate the potential of the GC method for pedigree-based association analysis of quantitative traits. The power and type one error of the method was compared to standard methods, such as the measured genotype (MG) approach and quantitative trait transmission-disequilibrium test. In human pedigrees, with trait heritability varying from 30 to 80%, the power of MG and GC approach was always higher than that of TDT. GC had correct type 1 error and its power was close to that of MG under moderate heritability (30%), but decreased with higher heritability. William Astle 1 , Chris Holmes 2 , David Balding 131 Department of Epidemiology and Public Health, Imperial College London, UK 32 Department of Statistics, University of Oxford, UK Keywords: Population structure, association studies, genetic epidemiology, statistical genetics In the analysis of population association studies, Genomic Control (Devlin & Roeder, 1999) (GC) adjusts the Armitage test statistic to correct the type I error for the effects of population substructure, but its power is often sub-optimal. Turbo Genomic Control (TGC) generalises GC to incorporate co-variation of relatedness and phenotype, retaining control over type I error while improving power. TGC is similar to the method of Yu et al. (2006), but we extend it to binary (case-control) in addition to quantitative phenotypes, we implement improved estimation of relatedness coefficients, and we derive an explicit statistic that generalizes the Armitage test statistic and is fast to compute. TGC also has similarities to EIGENSTRAT (Price et al., 2006) which is a new method based on principle components analysis. The problems of population structure(Clayton et al., 2005) and cryptic relatedness (Voight & Pritchard, 2005) are essentially the same: if patterns of shared ancestry differ between cases and controls, whether distant (coancestry) or recent (cryptic relatedness), false positives can arise and power can be diminished. With large numbers of widely-spaced genetic markers, coancestry can now be measured accurately for each pair of individuals via patterns of allele-sharing. Instead of modelling subpopulations, we work instead with a coancestry coefficient for each pair of individuals in the study. We explain the relationships between TGC, GC and EIGENSTRAT. We present simulation studies and real data analyses to illustrate the power advantage of TGC in a range of scenarios incorporating both substructure and cryptic relatedness. References Clayton, D. G.et al. (2005) Population structure, differential bias and genomic control in a large-scale case-control association study. Nature Genetics37(11) November 2005. Devlin, B. & Roeder, K. (1999) Genomic control for association studies. Biometics55(4) December 1999. Price, A. L.et al. (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics38(8) (August 2006). Voight, B. J. & Pritchard, J. K. (2005) Confounding from cryptic relatedness in case-control association studies. Public Library of Science Genetics1(3) September 2005. Yu, J.et al. (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics38(2) February 2006. Hervé Perdry 1 , Marie-Claude Babron 1 , Françoise Clerget-Darpoux 133 INSERM U535 and Univ. Paris Sud, UMR-S 535, Villejuif, France Keywords: Modifier genes, case-parents trios, ordered transmission disequilibrium test A modifying locus is a polymorphic locus, distinct from the disease locus, which leads to differences in the disease phenotype, either by modifying the penetrance of the disease allele, or by modifying the expression of the disease. The effect of such a locus is a clinical heterogeneity that can be reflected by the values of an appropriate covariate, such as the age of onset, or the severity of the disease. We designed the Ordered Transmission Disequilibrium Test (OTDT) to test for a relation between the clinical heterogeneity, expressed by the covariate, and marker genotypes of a candidate gene. The method applies to trio families with one affected child and his parents. Each family member is genotyped at a bi-allelic marker M of a candidate gene. To each of the families is associated a covariate value; the families are ordered on the values of this covariate. As the TDT (Spielman et al. 1993), the OTDT is based on the observation of the transmission rate T of a given allele at M. The OTDT aims to find a critical value of the covariate which separates the sample of families in two subsamples in which the transmission rates are significantly different. We investigate the power of the method by simulations under various genetic models and covariate distributions. Acknowledgments H Perdry is funded by ARSEP. Pascal Croiseau 1 , Heather Cordell 2 , Emmanuelle Génin 134 INSERM U535 and University Paris Sud, UMR-S535, Villejuif, France 35 Institute of Human Genetics, Newcastle University, UK Keywords: Association, missing data, conditionnal logistic regression Missing data is an important problem in association studies. Several methods used to test for association need that individuals be genotyped at the full set of markers. Individuals with missing data need to be excluded from the analysis. This could involve an important decrease in sample size and a loss of information. If the disease susceptibility locus (DSL) is poorly typed, it is also possible that a marker in linkage disequilibrium gives a stronger association signal than the DSL. One may then falsely conclude that the marker is more likely to be the DSL. We recently developed a Multiple Imputation method to infer missing data on case-parent trios Starting from the observed data, a few number of complete data sets are generated by Markov-Chain Monte Carlo approach. These complete datasets are analysed using standard statistical package and the results are combined as described in Little & Rubin (2002). Here we report the results of simulations performed to examine, for different patterns of missing data, how often the true DSL gives the highest association score among different loci in LD. We found that multiple imputation usually correctly detect the DSL site even if the percentage of missing data is high. This is not the case for the naďve approach that consists in discarding trios with missing data. In conclusion, Multiple imputation presents the advantage of being easy to use and flexible and is therefore a promising tool in the search for DSL involved in complex diseases. Salma Kotti 1 , Heike Bickeböller 2 , Françoise Clerget-Darpoux 136 University Paris Sud, UMR-S535, Villejuif, France 37 Department of Genetic Epidemiology, Medical School, University of Göttingen, Germany Keywords: Genotype relative risk, internal controls, Family based analyses Family based analyses using internal controls are very popular both for detecting the effect of a genetic factor and for estimating the relative disease risk on the corresponding genotypes. Two different procedures are often applied to reconstitute internal controls. The first one considers one pseudocontrol genotype formed by the parental non-transmitted alleles called also 1:1 matching of alleles, while the second corresponds to three pseudocontrols corresponding to all genotypes formed by the parental alleles except the one of the case (1:3 matching). Many studies have compared between the two procedures in terms of the power and have concluded that the difference depends on the underlying genetic model and the allele frequencies. However, the estimation of the Genotype Relative Risk (GRR) under the two procedures has not been studied. Based on the fact that on the 1:1 matching, the control group is composed of the alleles untransmitted to the affected child and on the 1:3 matching, the control group is composed amongst alleles already transmitted to the affected child, we expect a difference on the GRR estimation. In fact, we suspect that the second procedure leads to biased estimation of the GRRs. We will analytically derive the GRR estimators for the 1:1 and 1:3 matching and will present the results at the meeting. Family based analyses using internal controls are very popular both for detecting the effect of a genetic factor and for estimating the relative disease risk on the corresponding genotypes. Two different procedures are often applied to reconstitute internal controls. The first one considers one pseudocontrol genotype formed by the parental non-transmitted alleles called also 1:1 matching of alleles, while the second corresponds to three pseudocontrols corresponding to all genotypes formed by the parental alleles except the one of the case (1:3 matching). Many studies have compared between the two procedures in terms of the power and have concluded that the difference depends on the underlying genetic model and the allele frequencies. However, the estimation of the Genotype Relative Risk (GRR) under the two procedures has not been studied. Based on the fact that on the 1:1 matching, the control group is composed of the alleles untransmitted to the affected child and on the 1:3 matching, the control group is composed amongst alleles already transmitted to the affected child, we expect a difference on the GRR estimation. In fact, we suspect that the second procedure leads to biased estimation of the GRR. We will analytically derive the GRR estimator for the 1:1 and 1:3 matching and will present the results at the meeting. Luigi Palla 1 , David Siegmund 239 Department of Mathematics,Free University Amsterdam, The Netherlands 40 Department of Statistics, Stanford University, California, USA Keywords: TDT, assortative mating, inbreeding, statistical power A substantial amount of Assortative Mating (AM) is often recorded on physical and psychological, dichotomous as well as quantitative traits that are supposed to have a multifactorial genetic component. In particular AM has the effect of increasing the genetic variance, even more than inbreeding because it acts across loci beside within loci, when the trait has a multifactorial origin. Under the assumption of a polygenic model for AM dating back to Wright (1921) and refined by Crow and Felsenstein (1968,1982), the effect of assortative mating on the power to detect genetic association in the Transmission Disequilibrium Test (TDT) is explored as parameters, such as the effective number of genes and the allelic frequency vary. The power is reflected by the non centrality parameter of the TDT and is expressed as a function of the number of trios, the relative risk of the heterozygous genotype and the allele frequency (Siegmund and Yakir, 2007). The noncentrality parameter of the relevant score statistic is updated considering the effect of AM which is expressed in terms of an ,effective' inbreeding coefficient. In particular, for dichotomous traits it is apparent that the higher the number of genes involved in the trait, the lower the loss in power due to AM. Finally an attempt is made to extend this relation to the Q-TDT (Rabinowitz, 1997), which involves considering the effect of AM also on the phenotypic variance of the trait of interest, under the assumption that AM affects only its additive genetic component. References Crow, & Felsenstein, (1968). The effect of assortative mating on the genetic composition of a population. Eugen.Quart.15, 87,97. Rabinowitz,, 1997. A Transmission Disequilibrium Test for Quantitative Trait Loci. Human Heredity47, 342,350. Siegmund, & Yakir, (2007) Statistics of gene mapping, Springer. Wright, (1921). System of mating.III. Assortative mating based on somatic resemblance. Genetics6, 144,161. Jérémie Nsengimana 1 , Ben D Brown 2 , Alistair S Hall 2 , Jenny H Barrett 141 Leeds Institute of Molecular Medicine, University of Leeds, UK 42 Leeds Institute for Genetics, Health and Therapeutics, University of Leeds, UK Keywords: Inflammatory genes, haplotype, coronary artery disease Genetic Risk of Acute Coronary Events (GRACE) is an initiative to collect cases of coronary artery disease (CAD) and their unaffected siblings in the UK and to use them to map genetic variants increasing disease risk. The aim of the present study was to test the association between CAD and 51 single nucleotide polymorphisms (SNPs) and their haplotypes from 35 inflammatory genes. Genotype data were available for 1154 persons affected before age 66 (including 48% before age 50) and their 1545 unaffected siblings (891 discordant families). Each SNP was tested for association to CAD, and haplotypes within genes or gene clusters were tested using FBAT (Rabinowitz & Laird, 2000). For the most significant results, genetic effect size was estimated using conditional logistic regression (CLR) within STATA adjusting for other risk factors. Haplotypes were assigned using HAPLORE (Zhang et al., 2005), which considers all parental mating types consistent with offspring genotypes and assigns them a probability of occurence. This probability was used in CLR to weight the haplotypes. In the single SNP analysis, several SNPs showed some evidence for association, including one SNP in the interleukin-1A gene. Analysing haplotypes in the interleukin-1 gene cluster, a common 3-SNP haplotype was found to increase the risk of CAD (P = 0.009). In an additive genetic model adjusting for covariates the odds ratio (OR) for this haplotype is 1.56 (95% CI: 1.16-2.10, p = 0.004) for early-onset CAD (before age 50). This study illustrates the utility of haplotype analysis in family-based association studies to investigate candidate genes. References Rabinowitz, D. & Laird, N. M. (2000) Hum Hered50, 211,223. Zhang, K., Sun, F. & Zhao, H. (2005) Bioinformatics21, 90,103. Andrea Foulkes 1 , Recai Yucel 1 , Xiaohong Li 143 Division of Biostatistics, University of Massachusetts, USA Keywords: Haploytpe, high-dimensional, mixed modeling The explosion of molecular level information coupled with large epidemiological studies presents an exciting opportunity to uncover the genetic underpinnings of complex diseases; however, several analytical challenges remain to be addressed. Characterizing the components to complex diseases inevitably requires consideration of synergies across multiple genetic loci and environmental and demographic factors. In addition, it is critical to capture information on allelic phase, that is whether alleles within a gene are in cis (on the same chromosome) or in trans (on different chromosomes.) In associations studies of unrelated individuals, this alignment of alleles within a chromosomal copy is generally not observed. We address the potential ambiguity in allelic phase in this high dimensional data setting using mixed effects models. Both a semi-parametric and fully likelihood-based approach to estimation are considered to account for missingness in cluster identifiers. In the first case, we apply a multiple imputation procedure coupled with a first stage expectation maximization algorithm for parameter estimation. A bootstrap approach is employed to assess sensitivity to variability induced by parameter estimation. Secondly, a fully likelihood-based approach using an expectation conditional maximization algorithm is described. Notably, these models allow for characterizing high-order gene-gene interactions while providing a flexible statistical framework to account for the confounding or mediating role of person specific covariates. The proposed method is applied to data arising from a cohort of human immunodeficiency virus type-1 (HIV-1) infected individuals at risk for therapy associated dyslipidemia. Simulation studies demonstrate reasonable power and control of family-wise type 1 error rates. Vivien Marquard 1 , Lars Beckmann 1 , Jenny Chang-Claude 144 Division of Cancer Epidemiology, German Cancer Research Center (DKFZ) Heidelberg, Germany Keywords: Genotyping errors, type I error, haplotype-based association methods It has been shown in several simulation studies that genotyping errors may have a great impact on the type I error of statistical methods used in genetic association analysis of complex diseases. Our aim was to investigate type I error rates in a case-control study, when differential and non-differential genotyping errors were introduced in realistic scenarios. We simulated case-control data sets, where individual genotypes were drawn from a haplotype distribution of 18 haplotypes with 15 markers in the APM1 gene. Genotyping errors were introduced following the unrestricted and symmetric with 0 edges error models described by Heid et al. (2006). In six scenarios, errors resulted from changes of one allele to another with predefined probabilities of 1%, 2.5% or 10%, respectively. A multiple number of errors per haplotype was possible and could vary between 0 and 15, the number of markers investigated. We examined three association methods: Mantel statistics using haplotype-sharing; a haplotype-specific score test; and Armitage trend test for single markers. The type I error rates were not influenced for any of all the three methods for a genotyping error rate of less than 1%. For higher error rates and differential errors, the type I error of the Mantel statistic was only slightly and of the Armitage trend test moderately increased. The type I error rates of the score test were highly increased. The type I error rates were correct for all three methods for non-differential errors. Further investigations will be carried out with different frequencies of differential error rates and focus on power. Arne Neumann 1 , Dörthe Malzahn 1 , Martina Müller 2 , Heike Bickeböller 145 Department of Genetic Epidemiology, Medical School, University of Göttingen, Germany 46 GSF-National Research Center for Environment and Health, Neuherberg & IBE-Institute of Epidemiology, Ludwig-Maximilians University München, Germany Keywords: Interaction, longitudinal, nonparametric Longitudinal data show the time dependent course of phenotypic traits. In this contribution, we consider longitudinal cohort studies and investigate the association between two candidate genes and a dependent quantitative longitudinal phenotype. The set-up defines a factorial design which allows us to test simultaneously for the overall gene effect of the loci as well as for possible gene-gene and gene time interaction. The latter would induce genetically based time-profile differences in the longitudinal phenotype. We adopt a non-parametric statistical test to genetic epidemiological cohort studies and investigate its performance by simulation studies. The statistical test was originally developed for longitudinal clinical studies (Brunner, Munzel, Puri, 1999 J Multivariate Anal 70:286-317). It is non-parametric in the sense that no assumptions are made about the underlying distribution of the quantitative phenotype. Longitudinal observations belonging to the same individual can be arbitrarily dependent on one another for the different time points whereas trait observations of different individuals are independent. The two loci are assumed to be statistically independent. Our simulations show that the nonparametric test is comparable with ANOVA in terms of power of detecting gene-gene and gene-time interaction in an ANOVA favourable setting. Rebecca Hein 1 , Lars Beckmann 1 , Jenny Chang-Claude 147 Division of Cancer Epidemiology, German Cancer Research Center (DKFZ) Heidelberg, Germany Keywords: Indirect association studies, interaction effects, linkage disequilibrium, marker allele frequency Association studies accounting for gene-environment interactions (GxE) may be useful for detecting genetic effects and identifying important environmental effect modifiers. Current technology facilitates very dense marker spacing in genetic association studies; however, the true disease variant(s) may not be genotyped. In this situation, an association between a gene and a phenotype may still be detectable, using genetic markers associated with the true disease variant(s) (indirect association). Zondervan and Cardon [2004] showed that the odds ratios (OR) of markers which are associated with the disease variant depend highly on the linkage disequilibrium (LD) between the variant and the markers, and whether the allele frequencies match and thereby influence the sample size needed to detect genetic association. We examined the influence of LD and allele frequencies on the sample size needed to detect GxE in indirect association studies, and provide tables for sample size estimation. For discordant allele frequencies and incomplete LD, sample sizes can be unfeasibly large. The influence of both factors is stronger for disease loci with small rather than moderate to high disease allele frequencies. A decline in D' of e.g. 5% has less impact on sample size than increasing the difference in allele frequencies by the same percentage. Assuming 80% power, large interaction effects can be detected using smaller sample sizes than those needed for the detection of main effects. The detection of interaction effects involving rare alleles may not be possible. Focussing only on marker density can be a limited strategy in indirect association studies for GxE. Cyril Dalmasso 1 , Emmanuelle Génin 2 , Catherine Bourgain 2 , Philippe Broët 148 JE 2492 , Univ. Paris-Sud, France 49 INSERM UMR-S 535 and University Paris Sud, Villejuif, France Keywords: Linkage analysis, Multiple testing, False Discovery Rate, Mixture model In the context of genome-wide linkage analyses, where a large number of statistical tests are simultaneously performed, the False Discovery Rate (FDR) that is defined as the expected proportion of false discoveries among all discoveries is nowadays widely used for taking into account the multiple testing problem. Other related criteria have been considered such as the local False Discovery Rate (lFDR) that is a variant of the FDR giving to each test its own measure of significance. The lFDR is defined as the posterior probability that a null hypothesis is true. Most of the proposed methods for estimating the lFDR or the FDR rely on distributional assumption under the null hypothesis. However, in observational studies, the empirical null distribution may be very different from the theoretical one. In this work, we propose a mixture model based approach that provides estimates of the lFDR and the FDR in the context of large-scale variance component linkage analyses. In particular, this approach allows estimating the empirical null distribution, this latter being a key quantity for any simultaneous inference procedure. The proposed method is applied on a real dataset. Arief Gusnanto 1 , Frank Dudbridge 150 MRC Biostatistics Unit, Cambridge UK Keywords: Significance, genome-wide, association, permutation, multiplicity Genome-wide association scans have introduced statistical challenges, mainly in the multiplicity of thousands of tests. The question of what constitutes a significant finding remains somewhat unresolved. Permutation testing is very time-consuming, whereas Bayesian arguments struggle to distinguish direct from indirect association. It seems attractive to summarise the multiplicity in a simple form that allows users to avoid time-consuming permutations. A standard significance level would facilitate reporting of results and reduce the need for permutation tests. This is potentially important because current scans do not have full coverage of the whole genome, and yet, the implicit multiplicity is genome-wide. We discuss some proposed summaries, with reference to the empirical null distribution of the multiple tests, approximated through a large number of random permutations. Using genome-wide data from the Wellcome Trust Case-Control Consortium, we use a sub-sampling approach with increasing density to estimate the nominal p-value to obtain family-wise significance of 5%. The results indicate that the significance level is converging to about 1e-7 as the marker spacing becomes infinitely dense. We considered the concept of an effective number of independent tests, and showed that when used in a Bonferroni correction, the number varies with the overall significance level, but is roughly constant in the region of interest. We compared several estimators of the effective number of tests, and showed that in the region of significance of interest, Patterson's eigenvalue based estimator gives approximately the right family-wise error rate. Michael Nothnagel 1 , Amke Caliebe 1 , Michael Krawczak 151 Institute of Medical Informatics and Statistics, University Clinic Schleswig-Holstein, University of Kiel, Germany Keywords: Association scans, Bayesian framework, posterior odds, genetic risk, multiplicative model Whole-genome association scans have been suggested to be a cost-efficient way to survey genetic variation and to map genetic disease factors. We used a Bayesian framework to investigate the posterior odds of a genuine association under multiplicative disease models. We demonstrate that the p value alone is not a sufficient means to evaluate the findings in association studies. We suggest that likelihood ratios should accompany p values in association reports. We argue, that, given the reported results of whole-genome scans, more associations should have been successfully replicated if the consistently made assumptions about considerable genetic risks were correct. We conclude that it is very likely that the vast majority of relative genetic risks are only of the order of 1.2 or lower. Clive Hoggart 1 , Maria De Iorio 1 , John Whittakker 2 , David Balding 152 Department of Epidemiology and Public Health, Imperial College London, UK 53 Department of Epidemiology and Public Health, London School of Hygiene and Tropical Medicine, UK Keywords: Genome-wide association analyses, shrinkage priors, Lasso Testing one SNP at a time does not fully realise the potential of genome-wide association studies to identify multiple causal variants of small effect, which is a plausible scenario for many complex diseases. Moreover, many simulation studies assume a single causal variant and so more complex realities are ignored. Analysing large numbers of variants simultaneously is now becoming feasible, thanks to developments in Bayesian stochastic search methods. We pose the problem of SNP selection as variable selection in a regression model. In contrast to single SNP tests this approach simultaneously models the effect of all SNPs. SNPs are selected by a Bayesian interpretation of the lasso (Tibshirani, 1996); the maximum a posterior (MAP) estimate of the regression coefficients, which have been given independent, double exponential prior distributions. The double exponential distribution is an example of a shrinkage prior, MAP estimates with shrinkage priors can be zero, thus all SNPs with non zero regression coefficients are selected. In addition to the commonly-used double exponential (Laplace) prior, we also implement the normal exponential gamma prior distribution. We show that use of the Laplace prior improves SNP selection in comparison with single -SNP tests, and that the normal exponential gamma prior leads to a further improvement. Our method is fast and can handle very large numbers of SNPs: we demonstrate its performance using both simulated and real genome-wide data sets with 500 K SNPs, which can be analysed in 2 hours on a desktop workstation. Mickael Guedj 1,2 , Jerome Wojcik 2 , Gregory Nuel 154 Laboratoire Statistique et Génome, Université d'Evry, Evry France 55 Serono Pharmaceutical Research Institute, Plan-les-Ouates, Switzerland Keywords: Local Replication, Local Score, Association In gene-mapping, replication of initial findings has been put forwards as the approach of choice for filtering false-positives from true signals for underlying loci. In practice, such replications are however too poorly observed. Besides the statistical and technical-related factors (lack of power, multiple-testing, stratification, quality control,) inconsistent conclusions obtained from independent populations might result from real biological differences. In particular, the high degree of variation in the strength of LD among populations of different origins is a major challenge to the discovery of genes. Seeking for Local Replications (defined as the presence of a signal of association in a same genomic region among populations) instead of strict replications (same locus, same risk allele) may lead to more reliable results. Recently, a multi-markers approach based on the Local Score statistic has been proposed as a simple and efficient way to select candidate genomic regions at the first stage of genome-wide association studies. Here we propose an extension of this approach adapted to replicated association studies. Based on simulations, this method appears promising. In particular it outperforms classical simple-marker strategies to detect modest-effect genes. Additionally it constitutes, to our knowledge, a first framework dedicated to the detection of such Local Replications. Juliet Chapman 1 , Claudio Verzilli 1 , John Whittaker 156 Department of Epidemiology and Public Health, London School of Hygiene and Tropical Medicine, UK Keywords: FDR, Association studies, Bayesian model selection As genomewide association studies become commonplace there is debate as to how such studies might be analysed and what we might hope to gain from the data. It is clear that standard single locus approaches are limited in that they do not adjust for the effects of other loci and problematic since it is not obvious how to adjust for multiple comparisons. False discovery rates have been suggested, but it is unclear how well these will cope with highly correlated genetic data. We consider the validity of standard false discovery rates in large scale association studies. We also show that a Bayesian procedure has advantages in detecting causal loci amongst a large number of dependant SNPs and investigate properties of a Bayesian FDR. Peter Kraft 157 Harvard School of Public Health, Boston USA Keywords: Gene-environment interaction, genome-wide association scans Appropriately analyzed two-stage designs,where a subset of available subjects are genotyped on a genome-wide panel of markers at the first stage and then a much smaller subset of the most promising markers are genotyped on the remaining subjects,can have nearly as much power as a single-stage study where all subjects are genotyped on the genome-wide panel yet can be much less expensive. Typically, the "most promising" markers are selected based on evidence for a marginal association between genotypes and disease. Subsequently, the few markers found to be associated with disease at the end of the second stage are interrogated for evidence of gene-environment interaction, mainly to understand their impact on disease etiology and public health impact. However, this approach may miss variants which have a sizeable effect restricted to one exposure stratum and therefore only a modest marginal effect. We have proposed to use information on the joint effects of genes and a discrete list of environmental exposures at the initial screening stage to select promising markers for the second stage [Kraft et al Hum Hered 2007]. This approach optimizes power to detect variants that have a sizeable marginal effect and variants that have a small marginal effect but a sizeable effect in a stratum defined by an environmental exposure. As an example, I discuss a proposed genome-wide association scan for Type II diabetes susceptibility variants based in several large nested case-control studies. Beate Glaser 1 , Peter Holmans 158 Biostatistics and Bioinformatics Unit, Cardiff University, School of Medicine, Heath Park, Cardiff, UK Keywords: Combined case-control and trios analysis, Power, False-positive rate, Simulation, Association studies The statistical power of genetic association studies can be enhanced by combining the analysis of case-control with parent-offspring trio samples. Various combined analysis techniques have been recently developed; as yet, there have been no comparisons of their power. This work was performed with the aim of identifying the most powerful method among available combined techniques including test statistics developed by Kazeem and Farrall (2005), Nagelkerke and colleagues (2004) and Dudbridge (2006), as well as a simple combination of ,2-statistics from single samples. Simulation studies were performed to investigate their power under different additive, multiplicative, dominant and recessive disease models. False-positive rates were determined by studying the type I error rates under null models including models with unequal allele frequencies between the single case-control and trios samples. We identified three techniques with equivalent power and false-positive rates, which included modifications of the three main approaches: 1) the unmodified combined Odds ratio estimate by Kazeem & Farrall (2005), 2) a modified approach of the combined risk ratio estimate by Nagelkerke & colleagues (2004) and 3) a modified technique for a combined risk ratio estimate by Dudbridge (2006). Our work highlights the importance of studies investigating test performance criteria of novel methods, as they will help users to select the optimal approach within a range of available analysis techniques. David Almorza 1 , M.V. Kandus 2 , Juan Carlos Salerno 2 , Rafael Boggio 359 Facultad de Ciencias del Trabajo, University of Cádiz, Spain 60 Instituto de Genética IGEAF, Buenos Aires, Argentina 61 Universidad Nacional de La Plata, Buenos Aires, Argentina Keywords: Principal component analysis, maize, ear weight, inbred lines The objective of this work was to evaluate the relationship among different traits of the ear of maize inbred lines and to group genotypes according to its performance. Ten inbred lines developed at IGEAF (INTA Castelar) and five public inbred lines as checks were used. A field trial was carried out in Castelar, Buenos Aires (34° 36' S , 58° 39' W) using a complete randomize design with three replications. At harvest, individual weight (P.E.), diameter (D.E.), row number (N.H.) and length (L.E.) of the ear were assessed. A principal component analysis, PCA, (Infostat 2005) was used, and the variability of the data was depicted with a biplot. Principal components 1 and 2 (CP1 and CP2) explained 90% of the data variability. CP1 was correlated with P.E., L.E. and D.E., meanwhile CP2 was correlated with N.H. We found that individual weight (P.E.) was more correlated with diameter of the ear (D.E.) than with length (L.E). Five groups of inbred lines were distinguished: with high P.E. and mean N.H. (04-70, 04-73, 04-101 and MO17), with high P.E. but less N.H. (04-61 and B14), with mean P.E. and N.H. (B73, 04-123 and 04-96), with high N.H. but less P.E. (LP109, 04-8, 04-91 and 04-76) and with low P.E. and low N.H. (LP521 and 04-104). The use of PCA showed which variables had more incidence in ear weight and how is the correlation among them. Moreover, the different groups found with this analysis allow the evaluation of inbred lines by several traits simultaneously. Sven Knüppel 1 , Anja Bauerfeind 1 , Klaus Rohde 162 Department of Bioinformatics, MDC Berlin, Germany Keywords: Haplotypes, association studies, case-control, nuclear families The area of gene chip technology provides a plethora of phase-unknown SNP genotypes in order to find significant association to some genetic trait. To circumvent possibly low information content of a single SNP one groups successive SNPs and estimates haplotypes. Haplotype estimation, however, may reveal ambiguous haplotype pairs and bias the application of statistical methods. Zaykin et al. (Hum Hered, 53:79-91, 2002) proposed the construction of a design matrix to take this ambiguity into account. Here we present a set of functions written for the Statistical package R, which carries out haplotype estimation on the basis of the EM-algorithm for individuals (case-control) or nuclear families. The construction of a design matrix on basis of estimated haplotypes or haplotype pairs allows application of standard methods for association studies (linear, logistic regression), as well as statistical methods as haplotype sharing statistics and TDT-Test. Applications of these methods to genome-wide association screens will be demonstrated. Manuela Zucknick 1 , Chris Holmes 2 , Sylvia Richardson 163 Department of Epidemiology and Public Health, Imperial College London, UK 64 Department of Statistics, Oxford Center for Gene Function, University of Oxford, UK Keywords: Bayesian, variable selection, MCMC, large p, small n, structured dependence In large-scale genomic applications vast numbers of markers or genes are scanned to find a few candidates which are linked to a particular phenotype. Statistically, this is a variable selection problem in the "large p, small n" situation where many more variables than samples are available. An additional feature is the complex dependence structure which is often observed among the markers/genes due to linkage disequilibrium or their joint involvement in biological processes. Bayesian variable selection methods using indicator variables are well suited to the problem. Binary phenotypes like disease status are common and both Bayesian probit and logistic regression can be applied in this context. We argue that logistic regression models are both easier to tune and to interpret than probit models and implement the approach by Holmes & Held (2006). Because the model space is vast, MCMC methods are used as stochastic search algorithms with the aim to quickly find regions of high posterior probability. In a trade-off between fast-updating but slow-moving single-gene Metropolis-Hastings samplers and computationally expensive full Gibbs sampling, we propose to employ the dependence structure among the genes/markers to help decide which variables to update together. Also, parallel tempering methods are used to aid bold moves and help avoid getting trapped in local optima. Mixing and convergence of the resulting Markov chains are evaluated and compared to standard samplers in both a simulation study and in an application to a gene expression data set. Reference Holmes, C. C. & Held, L. (2006) Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Analysis1, 145,168. Dawn Teare 165 MMGE, University of Sheffield, UK Keywords: CNP, family-based analysis, MCMC Evidence is accumulating that segmental copy number polymorphisms (CNPs) may represent a significant portion of human genetic variation. These highly polymorphic systems require handling as phenotypes rather than co-dominant markers, placing new demands on family-based analyses. We present an integrated approach to meet these challenges in the form of a graphical model, where the underlying discrete CNP phenotype is inferred from the (single or replicate) quantitative measure within the analysis, whilst assuming an allele based system segregating through the pedigree. [source]


    Association of psoriasis to PGLYRP and SPRR genes at PSORS4 locus on 1q shows heterogeneity between Finnish, Swedish and Irish families

    EXPERIMENTAL DERMATOLOGY, Issue 2 2009
    Kati Kainu
    Abstract:, A susceptibility locus for psoriasis, PSORS4, has been mapped to chromosome 1q21 in the region of the epidermal differentiation complex. The region has been refined to a 115 kb interval around the loricrin (LOR) gene. However, no evidence of association between polymorphisms in the LOR gene and psoriasis has been found. Therefore, we have analysed association to three candidate gene clusters of the region, the S100, small proline-rich protein (SPRR) and PGLYRP (peptidoglycan recognition protein) genes, which all contain functionally interesting psoriasis candidate genes. In previous studies, the SPRR and S100 genes have shown altered expression in psoriasis. Also polymorphisms in the PGLYRP genes have shown to be associated with psoriasis. We genotyped altogether 29 single nucleotide polymorphisms (SNPs) in 255 Finnish psoriasis families and analysed association with psoriasis using transmission disequilibrium test. A five-SNP haplotype of PGLYRP SNPs associated significantly with psoriasis. There was also suggestive evidence of association to SPRR gene locus in Finnish families. To confirm the putative associations, selected SNPs were genotyped also in a family collection of Swedish and Irish patients. The families supported association to the two gene regions, but there was also evidence of allelic heterogeneity. [source]


    Genetic study of the myelin oligodendrocyte glycoprotein (MOG) gene in schizophrenia

    GENES, BRAIN AND BEHAVIOR, Issue 1 2005
    G. Zai
    Schizophrenia (SCZ) is a neuropsychiatric disorder that affects approximately 1% of the general population. The human leukocyte antigen (HLA) system has been implicated in several genetic studies of SCZ. The myelin oligodendrocyte glycoprotein (MOG) gene, which is located close to the HLA region, is considered a candidate for SCZ due to its association with white matter abnormalities and its importance in mediating the complement cascade. Four polymorphisms in the MOG gene (CA)n (TAAA)n, and two intronic polymorphisms, C1334T and C10991T, were investigated for the possibility of association with SCZ using 111 SCZ proband and their families. We examined the transmission of the alleles of each of these polymorphisms with the transmission disequilibrium test. We did not observe significant evidence for biased transmission of alleles at the (CA)n (,2 = 2.430, 6 df, P = 0.876) (TAAA)n (,2 = 3.550, 5 df, P = 0.616), C1334T (,2 = 0.040, 1 df, P = 0.841) and C10991T (,2 = 0.154, 1 df, P = 0.695) polymorphisms. Overall haplotype analysis using the TRANSMIT program was also not significant (,2 = 7.954, 9 df, P = 0.539). Furthermore, our results comparing mean age at onset in the genotype groups using the Kruskal,Wallis Test were not significant. Our case-control analyses (182 cases age-, sex- and ethnicity-matched with healthy controls) and combined z -score [(CA)n: z -score =,1.126, P = 0.130; (TAAA)n: z -score = ,0.233, P = 0.408; C1334T: z -score = 0.703, P = 0.241; C10991T: z -score = 0.551, P = 0.291] were also not significant. Although our data are negative, the intriguing hypothesis for MOG in SCZ may warrant further investigation of this gene. [source]


    Differential parental transmission of markers in RUNX2 among cleft case-parent trios from four populations

    GENETIC EPIDEMIOLOGY, Issue 6 2008
    Jae Woong Sull
    Abstract Isolated cleft lip with or without cleft palate (CL/P) is among the most common human birth defects, with a prevalence around 1 in 700 live births. The Runt-related transcription factor 2 (RUNX2) gene has been suggested as a candidate gene for CL/P based largely on mouse models; however, no human studies have focused on RUNX2 as a risk factor for CL/P. This study examines the association between markers in RUNX2 and isolated, nonsyndromic CL/P using a case-parent trio design, while considering parent-of-origin effects. Case-parent trios from four populations (77 from Maryland, 146 from Taiwan, 35 from Singapore, and 40 from Korea) were genotyped for 24 single nucleotide polymorphisms (SNPs) in the RUNX2 gene. We performed the transmission disequilibrium test on individual SNPs. Parent-of-origin effects were assessed using the transmission asymmetry test and the parent-of-origin likelihood ratio test (PO-LRT). When all trios were combined, the transmission asymmetry test revealed a block of 11 SNPs showing excess maternal transmission significant at the P<0.01 level, plus one SNP (rs1934328) showing excess paternal transmission (P=0.002). For the 11 SNPs showing excess maternal transmission, odds ratios of being transmitted to the case from the mother ranged between 3.00 and 4.00. The parent-of-origin likelihood ratio tests for equality of maternal and paternal transmission were significant for three individual SNPs (rs910586, rs2819861, and rs1934328). Thus, RUNX2 appears to influence risk of CL/P through a parent-of-origin effect with excess maternal transmission. Genet. Epidemiol. 2008. © 2008 Wiley-Liss, Inc. [source]


    Informative-Transmission Disequilibrium Test (i-TDT): combined linkage and association mapping that includes unaffected offspring as well as affected offspring

    GENETIC EPIDEMIOLOGY, Issue 2 2007
    Chao-Yu Guo
    Abstract To date, there is no test valid for the composite null hypothesis of no linkage or no association that utilizes transmission information from heterozygous parents to their unaffected offspring as well as the affected offspring from ascertained nuclear families. Since the unaffected siblings also provide information about linkage and association, we introduce a new strategy called the informative-transmission disequilibrium test (i-TDT), which uses transmission information from heterozygous parents to all of the affected and unaffected offspring in ascertained nuclear families and provides a valid chi-square test for both linkage and association. The i-TDT can be used in various study designs and can accommodate all types of independent nuclear families with at least one affected offspring. We show that the transmission/disequilibrium test (TDT) (Spielman et al. [1993] Am. J. Hum. Genet. 52:506,516) is a special case of the i-TDT, if the study sample contains only case-parent trios. If the sample contains only affected and unaffected offspring without parental genotypes, the i-TDT is equivalent to the sibship disequilibrium test (SDT) (Horvath and Laird [1998] Am. J. Hum. Genet. 63:1886,1897. In addition, the test statistic of i-TDT is simple, explicit and can be implemented easily without intensive computing. Through computer simulations, we demonstrate that power of the i-TDT can be higher in many circumstances compared to a method that uses affected offspring only. Applying the i-TDT to the Framingham Heart Study data, we found that the apolipoprotein E (APOE) gene is significantly linked and associated with cross-sectional measures and longitudinal changes in total cholesterol. Genet. Epidemiol. © 2006 Wiley-Liss, Inc. [source]


    Tests for genetic association using family data

    GENETIC EPIDEMIOLOGY, Issue 2 2002
    Mei-Chiung Shih
    Abstract We use likelihood-based score statistics to test for association between a disease and a diallelic polymorphism, based on data from arbitrary types of nuclear families. The Nonfounder statistic extends the transmission disequilibrium test (TDT) to accommodate affected and unaffected offspring, missing parental genotypes, phenotypes more general than qualitative traits, such as censored survival data and quantitative traits, and residual correlation of phenotypes within families. The Founder statistic compares observed or inferred parental genotypes to those expected in the general population. Here the genotypes of affected parents and those with many affected offspring are weighted more heavily than unaffected parents and those with few affected offspring. We illustrate the tests by applying them to data on a polymorphism of the SRD5A2 gene in nuclear families with multiple cases of prostate cancer. We also use simulations to compare the power of these family-based statistics to that of the score statistic based on Cox's partial likelihood for censored survival data, and find that the family-based statistics have considerably more power when there are many untyped parents. The software program FGAP for computing test statistics is available at http://www.stanford.edu/dept/HRP/epidemiology/FGAP. Genet. Epidemiol. 22:128,145, 2002. © 2002 Wiley-Liss, Inc. [source]


    A common variant in MTHFD1L is associated with neural tube defects and mRNA splicing efficiency,

    HUMAN MUTATION, Issue 12 2009
    Anne Parle-McDermott
    Abstract Polymorphisms in folate-related genes have emerged as important risk factors in a range of diseases including neural tube defects (NTDs), cancer, and coronary artery disease (CAD). Having previously identified a polymorphism within the cytoplasmic folate enzyme, MTHFD1, as a maternal risk factor for NTDs, we considered the more recently identified mitochondrial paralogue, MTHFD1L, as a candidate gene for NTD association. We identified a common deletion/insertion polymorphism, rs3832406, c.781-6823ATT(7,9), which influences splicing efficiency and is strongly associated with NTD risk. Three alleles of rs3832406 were detected in the Irish population with varying numbers of ATT repeats: Allele 1 consists of ATT7, whereas Alleles 2 and 3 consist of ATT8 and ATT9, respectively. Allele 2 of this triallelic polymorphism showed a decreased case risk as demonstrated by case,control logistic regression (P=0.002) and by transmission disequilibrium test (TDT) (P=0.001), whereas Allele 1 showed an increased case risk. Allele 3 showed no influence on NTD risk and represents the lowest frequency allele (0.15). Additional single nucleotide polymorphism (SNP) genotyping in the same genomic region provides additional supportive evidence of an association. We demonstrate that two of the three alleles of rs3832406 are functionally different and influence the splicing efficiency of the alternate MTHFD1L mRNA transcripts. Hum Mutat 30:1,7, 2009. © 2009 Wiley-Liss, Inc. [source]


    Maternal MTHFR variant forms increase the risk in offspring of isolated nonsyndromic cleft lip with or without cleft palate,,

    HUMAN MUTATION, Issue 1 2004
    F. Pezzetti
    Abstract The pathogenesis of cleft lip with or without cleft palate (CL/P) is complex; its onset could be due to the interaction of various genetic and environmental factors. Recently MTHFR functional polymorphisms were found to increase the risk of this common malformation; however, this finding is still debated. We investigated 110 sporadic CL/P patients, their parents and 289 unrelated controls for c.665C>T (commonly known as 677C>T; p.Ala222Val) and c.1286A>C (known as 1298A>C; p.Glu429Ala) polymorphism in the MTHFR gene. Transmission disequilibrium test (TDT) showed no distortion in allele transmission. Nevertheless, association studies revealed significant differences in allele frequencies between mothers of CL/P patients and controls. This work supports the hypothesis that a lower MTHFR enzyme activity in pregnant women, mostly related to the c.665C>T variant form, is responsible for a higher risk of having CL/P affected offspring. © 2004 Wiley-Liss, Inc. [source]


    Confirmation of the role of ATG16l1 as a Crohn's disease susceptibility gene

    INFLAMMATORY BOWEL DISEASES, Issue 8 2007
    J.R. Fraser Cummings MRCP(UK)
    Abstract Background: A German genome-wide nonsynonymous single nucleotide polymorphism (nsSNP) association study identified ATG16L1 as a Crohn's disease (CD) susceptibility gene. The association appeared to be confined to the nsSNP rs2241880 and was confirmed in 2 German independent case-control collections (combined P = 4.0 × 10,8, odds ratio [OR] 1.45; 95% confidence interval [CI]: 1.21-1.74), a CD transmission disequilibrium test (TDT) collection, and an independent UK cohort. A weak statistical interaction with CARD15 was demonstrated. No association with ulcerative colitis (UC) was demonstrated. The aims of the study were to replicate the association with CD, examine subphenotype associations and statistical interactions with CARD15, IL23R, and the IBD5 risk haplotype, as well as explore the association with UC. Methods: The study included 645 CD and 676 UC rigorously phenotyped patients recruited from a single UK center. Unaffected controls comprised either spouses of patients (141) or individuals recruited from well-person clinics (1049). The nsSNP rs2241880 was genotyped using MassArray (Sequenom). Results: A strong association with CD was demonstrated (P = 2.33 × 10,7, OR 1.45 [1.25,1.67]), but no significant association was demonstrated with any subphenotype. We failed to replicate the reported interaction between rs2241880 and the CARD15 low-risk haplotypes dd and Dd. No significant statistical interaction with the 3 known CD susceptibility genes was seen. No association with UC susceptibility (P = 0.37, OR 1.06 [0.93-1.22]), or any UC subphenotype was identified. Conclusions: We confirmed the findings that ATG16L1 is a CD susceptibility gene and found no evidence of interaction with CARD15, IL23R, or IBD5. (Inflamm Bowel Dis 2007) [source]


    A population- and family-based study of Canadian families reveals association of HLA DRB1*0103 with colonic involvement in inflammatory bowel disease

    INFLAMMATORY BOWEL DISEASES, Issue 1 2003
    Dr. Mark S. Silverberg
    Abstract The aim of this study was to identify major histocompatibility complex alleles associated with the development and clinical features of inflammatory bowel disease (IBD). Genotyping at the human leukocyte antigen (HLA) DRB1 and DQB1 loci was performed on individuals from 118 Caucasian IBD sibling pair families and on 216 healthy controls. Both population- and family-based association tests were used to analyze data obtained on the entire study population and on clinical subgroups stratified by diagnosis, ethnicity, and disease distribution. HLA DRB1*0103 was significantly associated with IBD (OR = 6.0, p = 0.0001) in a case,control analysis of non-Jewish IBD-affected individuals. This association was apparent among both Crohn's disease (OR = 5.23, p = 0.0007) and ulcerative colitis (OR = 7.9, p = 0.0001) patients and was confirmed in the non-Jewish IBD population by results of family-based association analysis using the transmission disequilibrium test. HLA DQB1*0501 was also associated with IBD (OR = 1.64, p = 0.02) in the non-Jewish population, but statistically significant association of this allele with disease was not detected for Crohn's disease and ulcerative colitis separately. No significant associations were identified among the Jewish patients. In the non-Jewish IBD families, IBD was as strongly associated with the DRB1*0103 DQB1*0501 haplotype as with the DRB1*0103 allele alone. The carrier frequency of the DRB1*0103 allele was found to be 10-fold higher in Crohn's disease patients with pure colonic involvement than in healthy controls (38.5% vs. 3.2%; p = 0.0002). These data demonstrate the association of the HLA DRB1*0103 allele with both Crohn's disease and ulcerative colitis and with large intestine,restricted disease in non-Jewish IBD patients and therefore identify HLA DRB1*0103 as a potentially important contributor to disease susceptibility and to expression of colonic involvement in IBD. [source]


    Analysis of candidate genes on chromosome 19 in coeliac disease: an association study of the KIR and LILR gene clusters

    INTERNATIONAL JOURNAL OF IMMUNOGENETICS, Issue 4 2002
    S. J. Moodie
    Summary Coeliac disease is strongly heritable, with more than half of the genetic susceptibility estimated to come from genes outside the HLA region. Several candidate regions have been suggested from genome-wide linkage studies including chromosome 19q13.4 where linkage has been replicated between populations. The natural killer (NK) cell immunoglobulin-like receptors (KIRs) and leukocyte immunoglobulin-like receptor (LILR, also known as ILT and LIR) gene clusters lie within this region in the leukocyte receptor cluster (LRC). KIR molecules are involved in cytotoxic lymphocyte function and expressed by intraepithelial T and NK cells in the duodenum. We studied 132 unrelated UK Caucasian coeliac patients and their parents together with a control group of 171 UK Caucasians. PCR-SSP for KIR2DL1, KIR2DL2, KIR2DL3, KIR2DL5, LILRA3 (ILT6), LILRA3 deletion and an LILRA3 exon 3 single nucleotide polymorphism (SNP) allowed classification of KIR genotypes into five categories and determination of homozygosity or heterozygosity for the common A and B type KIR haplotypes (as defined in the text) and for the LILRA3 deletion. Case,control analysis found no association of the five KIR genotype categories, the A or B KIR haplotypes, the LILRA3 gene deletion or the LILRA3 exon 3 SNP with coeliac disease. A transmission disequilibrium test also found no association of the A and B KIR haplotypes or the LILRA3 gene deletion with coeliac disease. [source]


    Contribution of the LRP5 Gene to Normal Variation in Peak BMD in Women,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2005
    Daniel L Koller
    Abstract The role of the LRP5 gene in rare BMD-related traits has recently been shown. We tested whether variation in this gene might play a role in normal variation in peak BMD. Association between SNPs in LRP5 and hip and spine BMD was measured in 1301 premenopausal women. Only a small proportion of the BMD variation was attributable to LRP5 in our sample. Introduction: Mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) gene have been implicated as the cause of multiple distinct BMD-related rare Mendelian phenotypes. We sought to examine whether the LRP5 gene contributes to the observed variation in peak BMD in the normal population. Materials and Methods: We genotyped 12 single nucleotide polymorphisms (SNPs) in LRP5 using allele-specific PCR and mass spectrometry methods. Linkage disequilibrium between the genotyped LRP5 SNPs was measured. We tested for association between these SNPs and both hip and spine BMD (adjusted for age and body weight) in 1301 healthy premenopausal women who took part in a sibling pair study aimed at identifying the genes underlying peak bone mass. Our study used both population-based (ANOVA) and family-based (quantitative transmission disequilibrium test) association methodology. Results and Conclusions: The linkage disequilibrium pattern and haplotype block structure within the LRP5 gene were consistent with that observed in other studies. Although significant evidence of association was found between LRP5 SNPs and both hip and spine BMD, only a small proportion of the total variation in these phenotypes was accounted for. The genotyped SNPs accounted for ,0.8% of the variation in femoral neck BMD and 1.1% of the variation in spine BMD. Results from our sample suggest that natural variation in and around LRP5 is not a major contributor to the observed variability in peak BMD at either the femoral neck or lumbar spine in white women. [source]


    Single-Nucleotide Polymorphisms in Corticotropin Releasing Hormone Receptor 1 Gene (CRHR1) Are Associated With Quantitative Trait of Event-Related Potential and Alcohol Dependence

    ALCOHOLISM, Issue 6 2010
    Andrew C. H. Chen
    Background:, Endophenotypes reflect more proximal effects of genes than diagnostic categories, hence providing a more powerful strategy in searching for genes involved in complex psychiatric disorders. There is strong evidence suggesting the P3 amplitude of the event-related potential (ERP) as an endophenotype for the risk of alcoholism and other disinhibitory disorders. Recent studies demonstrated a crucial role of corticotropin releasing hormone receptor 1 (CRHR1) in the environmental stress response and ethanol self-administration in animal models. The aim of the present study was to test the potential associations between single-nucleotide polymorphisms (SNPs) in the CRHR1 gene and the quantitative trait, P3 amplitude during the processing of visual target signals in an oddball paradigm, as well as alcohol dependence diagnosis. Methods:, We analyzed a sample from the Collaborative Study on the Genetics of Alcoholism (COGA) comprising 1049 Caucasian subjects from 209 families (including 472 alcohol-dependent individuals). Quantitative transmission disequilibrium test (QTDT) and family-based association test (FBAT) were used to test the association, and false discovery rate (FDR) was applied to correct for multiple comparisons. Results:, Significant associations (p < 0.05) were found between the P3 amplitude and alcohol dependence with multiple SNPs in the CRHR1 gene. Conclusions:, Our results suggest that CRHR1 may be involved in modulating the P3 component of the ERP during information processing and in vulnerability to alcoholism. These findings underscore the utility of electrophysiology and the endophenotype approach in the genetic study of psychiatric disorders. [source]


    Possible association of a cholecystokinin promoter variant to schizophrenia,

    AMERICAN JOURNAL OF MEDICAL GENETICS, Issue 5 2002
    Zhewu Wang
    Abstract Several lines of research indicate a cholecystokinin (CCK) deficit in schizophrenia patients. A C to T substitution was found in the promoter region of the CCK gene. We investigated this promoter variant in patients with schizophrenia and geographically-matchedcontrols. The T allele was detected in 24% of the 85 schizophrenics and 16% of the 247 controls. No significant difference in the T allele frequency was found between patients and controls (,2,=,2.77, P,>,0.1). The schizophrenia sample was analyzed further along the dimensions of positive and negative symptoms. The patients with prominent negative symptoms presented a statistically significant association to the T allele (,2,=,4.13, P,<,0.04). However, the significance disappeared after the Bonferroni correction (P,>,0.15). Since the case-control analysis may present incorrect ethnic match between cases and controls, we applied the family-based tests to verify the above findings. Both transmission disequilibrium test (TDT; ,2,=,5.33, P,<,0.025 in 12 trios) and haplotype relative risk (HRR; ,2,=,3.844, P,<,0.05 in 60 trios) indicated a significantly high transmission of T allele to schizophrenia offspring probands from their parents. While our family-based tests seem to support the CCK involvement in schizophrenia, no definite conclusion can be drawn based on such a small sample size. This preliminary finding is subjected to future investigations. © 2002 Wiley-Liss, Inc. [source]


    Tests of Association for Quantitative Traits in Nuclear Families Using Principal Components to Correct for Population Stratification

    ANNALS OF HUMAN GENETICS, Issue 6 2009
    Lei Zhang
    SUMMARY Traditional transmission disequilibrium test (TDT) based methods for genetic association analyses are robust to population stratification at the cost of a substantial loss of power. We here describe a novel method for family-based association studies that corrects for population stratification with the use of an extension of principal component analysis (PCA). Specifically, we adopt PCA on unrelated parents in each family. We then infer principal components for children from those for their parents through a TDT-like strategy. Two test statistics within the variance-components model are proposed for association tests. Simulation results show that the proposed tests have correct type I error rates regardless of population stratification, and have greatly improved power over two popular TDT-based methods: QTDT and FBAT. The application to the Genetic Analysis Workshop 16 (GAW16) data sets attests to the feasibility of the proposed method. [source]


    European Mathematical Genetics Meeting, Heidelberg, Germany, 12th,13th April 2007

    ANNALS OF HUMAN GENETICS, Issue 4 2007
    Article first published online: 28 MAY 200
    Saurabh Ghosh 11 Indian Statistical Institute, Kolkata, India High correlations between two quantitative traits may be either due to common genetic factors or common environmental factors or a combination of both. In this study, we develop statistical methods to extract the contribution of a common QTL to the total correlation between the components of a bivariate phenotype. Using data on bivariate phenotypes and marker genotypes for sib-pairs, we propose a test for linkage between a common QTL and a marker locus based on the conditional cross-sib trait correlations (trait 1 of sib 1 , trait 2 of sib 2 and conversely) given the identity-by-descent sharing at the marker locus. The null hypothesis cannot be rejected unless there exists a common QTL. We use Monte-Carlo simulations to evaluate the performance of the proposed test under different trait parameters and quantitative trait distributions. An application of the method is illustrated using data on two alcohol-related phenotypes from the Collaborative Study On The Genetics Of Alcoholism project. Rémi Kazma 1 , Catherine Bonaďti-Pellié 1 , Emmanuelle Génin 12 INSERM UMR-S535 and Université Paris Sud, Villejuif, 94817, France Keywords: Gene-environment interaction, sibling recurrence risk, exposure correlation Gene-environment interactions may play important roles in complex disease susceptibility but their detection is often difficult. Here we show how gene-environment interactions can be detected by investigating the degree of familial aggregation according to the exposure of the probands. In case of gene-environment interaction, the distribution of genotypes of affected individuals, and consequently the risk in relatives, depends on their exposure. We developed a test comparing the risks in sibs according to the proband exposure. To evaluate the properties of this new test, we derived the formulas for calculating the expected risks in sibs according to the exposure of probands for various values of exposure frequency, relative risk due to exposure alone, frequencies of latent susceptibility genotypes, genetic relative risks and interaction coefficients. We find that the ratio of risks when the proband is exposed and not exposed is a good indicator of the interaction effect. We evaluate the power of the test for various sample sizes of affected individuals. We conclude that this test is valuable for diseases with moderate familial aggregation, only when the role of the exposure has been clearly evidenced. Since a correlation for exposure among sibs might lead to a difference in risks among sibs in the different proband exposure strata, we also add an exposure correlation coefficient in the model. Interestingly, we find that when this correlation is correctly accounted for, the power of the test is not decreased and might even be significantly increased. Andrea Callegaro 1 , Hans J.C. Van Houwelingen 1 , Jeanine Houwing-Duistermaat 13 Dept. of Medical Statistics and Bioinformatics, Leiden University Medical Center, The Netherlands Keywords: Survival analysis, age at onset, score test, linkage analysis Non parametric linkage (NPL) analysis compares the identical by descent (IBD) sharing in sibling pairs to the expected IBD sharing under the hypothesis of no linkage. Often information is available on the marginal cumulative hazards (for example breast cancer incidence curves). Our aim is to extend the NPL methods by taking into account the age at onset of selected sibling pairs using these known marginal hazards. Li and Zhong (2002) proposed a (retrospective) likelihood ratio test based on an additive frailty model for genetic linkage analysis. From their model we derive a score statistic for selected samples which turns out to be a weighed NPL method. The weights depend on the marginal cumulative hazards and on the frailty parameter. A second approach is based on a simple gamma shared frailty model. Here, we simply test whether the score function of the frailty parameter depends on the excess IBD. We compare the performance of these methods using simulated data. Céline Bellenguez 1 , Carole Ober 2 , Catherine Bourgain 14 INSERM U535 and University Paris Sud, Villejuif, France 5 Department of Human Genetics, The University of Chicago, USA Keywords: Linkage analysis, linkage disequilibrium, high density SNP data Compared with microsatellite markers, high density SNP maps should be more informative for linkage analyses. However, because they are much closer, SNPs present important linkage disequilibrium (LD), which biases classical nonparametric multipoint analyses. This problem is even stronger in population isolates where LD extends over larger regions with a more stochastic pattern. We investigate the issue of linkage analysis with a 500K SNP map in a large and inbred 1840-member Hutterite pedigree, phenotyped for asthma. Using an efficient pedigree breaking strategy, we first identified linked regions with a 5cM microsatellite map, on which we focused to evaluate the SNP map. The only method that models LD in the NPL analysis is limited in both the pedigree size and the number of markers (Abecasis and Wigginton, 2005) and therefore could not be used. Instead, we studied methods that identify sets of SNPs with maximum linkage information content in our pedigree and no LD-driven bias. Both algorithms that directly remove pairs of SNPs in high LD and clustering methods were evaluated. Null simulations were performed to control that Zlr calculated with the SNP sets were not falsely inflated. Preliminary results suggest that although LD is strong in such populations, linkage information content slightly better than that of microsatellite maps can be extracted from dense SNP maps, provided that a careful marker selection is conducted. In particular, we show that the specific LD pattern requires considering LD between a wide range of marker pairs rather than only in predefined blocks. Peter Van Loo 1,2,3 , Stein Aerts 1,2 , Diether Lambrechts 4,5 , Bernard Thienpont 2 , Sunit Maity 4,5 , Bert Coessens 3 , Frederik De Smet 4,5 , Leon-Charles Tranchevent 3 , Bart De Moor 2 , Koen Devriendt 3 , Peter Marynen 1,2 , Bassem Hassan 1,2 , Peter Carmeliet 4,5 , Yves Moreau 36 Department of Molecular and Developmental Genetics, VIB, Belgium 7 Department of Human Genetics, University of Leuven, Belgium 8 Bioinformatics group, Department of Electrical Engineering, University of Leuven, Belgium 9 Department of Transgene Technology and Gene Therapy, VIB, Belgium 10 Center for Transgene Technology and Gene Therapy, University of Leuven, Belgium Keywords: Bioinformatics, gene prioritization, data fusion The identification of genes involved in health and disease remains a formidable challenge. Here, we describe a novel bioinformatics method to prioritize candidate genes underlying pathways or diseases, based on their similarity to genes known to be involved in these processes. It is freely accessible as an interactive software tool, ENDEAVOUR, at http://www.esat.kuleuven.be/endeavour. Unlike previous methods, ENDEAVOUR generates distinct prioritizations from multiple heterogeneous data sources, which are then integrated, or fused, into one global ranking using order statistics. ENDEAVOUR prioritizes candidate genes in a three-step process. First, information about a disease or pathway is gathered from a set of known "training" genes by consulting multiple data sources. Next, the candidate genes are ranked based on similarity with the training properties obtained in the first step, resulting in one prioritized list for each data source. Finally, ENDEAVOUR fuses each of these rankings into a single global ranking, providing an overall prioritization of the candidate genes. Validation of ENDEAVOUR revealed it was able to efficiently prioritize 627 genes in disease data sets and 76 genes in biological pathway sets, identify candidates of 16 mono- or polygenic diseases, and discover regulatory genes of myeloid differentiation. Furthermore, the approach identified YPEL1 as a novel gene involved in craniofacial development from a 2-Mb chromosomal region, deleted in some patients with DiGeorge-like birth defects. Finally, we are currently evaluating a pipeline combining array-CGH, ENDEAVOUR and in vivo validation in zebrafish to identify novel genes involved in congenital heart defects. Mark Broom 1 , Graeme Ruxton 2 , Rebecca Kilner 311 Mathematics Dept., University of Sussex, UK 12 Division of Environmental and Evolutionary Biology, University of Glasgow, UK 13 Department of Zoology, University of Cambridge, UK Keywords: Evolutionarily stable strategy, parasitism, asymmetric game Brood parasites chicks vary in the harm that they do to their companions in the nest. In this presentation we use game-theoretic methods to model this variation. Our model considers hosts which potentially abandon single nestlings and instead choose to re-allocate their reproductive effort to future breeding, irrespective of whether the abandoned chick is the host's young or a brood parasite's. The parasite chick must decide whether or not to kill host young by balancing the benefits from reduced competition in the nest against the risk of desertion by host parents. The model predicts that three different types of evolutionarily stable strategies can exist. (1) Hosts routinely rear depleted broods, the brood parasite always kills host young and the host never then abandons the nest. (2) When adult survival after deserting single offspring is very high, hosts always abandon broods of a single nestling and the parasite never kills host offspring, effectively holding them as hostages to prevent nest desertion. (3) Intermediate strategies, in which parasites sometimes kill their nest-mates and host parents sometimes desert nests that contain only a single chick, can also be evolutionarily stable. We provide quantitative descriptions of how the values given to ecological and behavioral parameters of the host-parasite system influence the likelihood of each strategy and compare our results with real host-brood parasite associations in nature. Martin Harrison 114 Mathematics Dept, University of Sussex, UK Keywords: Brood parasitism, games, host, parasite The interaction between hosts and parasites in bird populations has been studied extensively. Game theoretical methods have been used to model this interaction previously, but this has not been studied extensively taking into account the sequential nature of this game. We consider a model allowing the host and parasite to make a number of decisions, which depend on a number of natural factors. The host lays an egg, a parasite bird will arrive at the nest with a certain probability and then chooses to destroy a number of the host eggs and lay one of it's own. With some destruction occurring, either natural or through the actions of the parasite, the host chooses to continue, eject an egg (hoping to eject the parasite) or abandon the nest. Once the eggs have hatched the game then falls to the parasite chick versus the host. The chick chooses to destroy or eject a number of eggs. The final decision is made by the host, choosing whether to raise or abandon the chicks that are in the nest. We consider various natural parameters and probabilities which influence these decisions. We then use this model to look at real-world situations of the interactions of the Reed Warbler and two different parasites, the Common Cuckoo and the Brown-Headed Cowbird. These two parasites have different methods in the way that they parasitize the nests of their hosts. The hosts in turn have a different reaction to these parasites. Arne Jochens 1 , Amke Caliebe 2 , Uwe Roesler 1 , Michael Krawczak 215 Mathematical Seminar, University of Kiel, Germany 16 Institute of Medical Informatics and Statistics, University of Kiel, Germany Keywords: Stepwise mutation model, microsatellite, recursion equation, temporal behaviour We consider the stepwise mutation model which occurs, e.g., in microsatellite loci. Let X(t,i) denote the allelic state of individual i at time t. We compute expectation, variance and covariance of X(t,i), i=1,,,N, and provide a recursion equation for P(X(t,i)=z). Because the variance of X(t,i) goes to infinity as t grows, for the description of the temporal behaviour, we regard the scaled process X(t,i)-X(t,1). The results furnish a better understanding of the behaviour of the stepwise mutation model and may in future be used to derive tests for neutrality under this model. Paul O'Reilly 1 , Ewan Birney 2 , David Balding 117 Statistical Genetics, Department of Epidemiology and Public Health, Imperial, College London, UK 18 European Bioinformatics Institute, EMBL, Cambridge, UK Keywords: Positive selection, Recombination rate, LD, Genome-wide, Natural Selection In recent years efforts to develop population genetics methods that estimate rates of recombination and levels of natural selection in the human genome have intensified. However, since the two processes have an intimately related impact on genetic variation their inference is vulnerable to confounding. Genomic regions subject to recent selection are likely to have a relatively recent common ancestor and consequently less opportunity for historical recombinations that are detectable in contemporary populations. Here we show that selection can reduce the population-based recombination rate estimate substantially. In genome-wide studies for detecting selection we observe a tendency to highlight loci that are subject to low levels of recombination. We find that the outlier approach commonly adopted in such studies may have low power unless variable recombination is accounted for. We introduce a new genome-wide method for detecting selection that exploits the sensitivity to recent selection of methods for estimating recombination rates, while accounting for variable recombination using pedigree data. Through simulations we demonstrate the high power of the Ped/Pop approach to discriminate between neutral and adaptive evolution, particularly in the context of choosing outliers from a genome-wide distribution. Although methods have been developed showing good power to detect selection ,in action', the corresponding window of opportunity is small. In contrast, the power of the Ped/Pop method is maintained for many generations after the fixation of an advantageous variant Sarah Griffiths 1 , Frank Dudbridge 120 MRC Biostatistics Unit, Cambridge, UK Keywords: Genetic association, multimarker tag, haplotype, likelihood analysis In association studies it is generally too expensive to genotype all variants in all subjects. We can exploit linkage disequilibrium between SNPs to select a subset that captures the variation in a training data set obtained either through direct resequencing or a public resource such as the HapMap. These ,tag SNPs' are then genotyped in the whole sample. Multimarker tagging is a more aggressive adaptation of pairwise tagging that allows for combinations of two or more tag SNPs to predict an untyped SNP. Here we describe a new method for directly testing the association of an untyped SNP using a multimarker tag. Previously, other investigators have suggested testing a specific tag haplotype, or performing a weighted analysis using weights derived from the training data. However these approaches do not properly account for the imperfect correlation between the tag haplotype and the untyped SNP. Here we describe a straightforward approach to testing untyped SNPs using a missing-data likelihood analysis, including the tag markers as nuisance parameters. The training data is stacked on top of the main body of genotype data so there is information on how the tag markers predict the genotype of the untyped SNP. The uncertainty in this prediction is automatically taken into account in the likelihood analysis. This approach yields more power and also a more accurate prediction of the odds ratio of the untyped SNP. Anke Schulz 1 , Christine Fischer 2 , Jenny Chang-Claude 1 , Lars Beckmann 121 Division of Cancer Epidemiology, German Cancer Research Center (DKFZ) Heidelberg, Germany 22 Institute of Human Genetics, University of Heidelberg, Germany Keywords: Haplotype, haplotype sharing, entropy, Mantel statistics, marker selection We previously introduced a new method to map genes involved in complex diseases, using haplotype sharing-based Mantel statistics to correlate genetic and phenotypic similarity. Although the Mantel statistic is powerful in narrowing down candidate regions, the precise localization of a gene is hampered in genomic regions where linkage disequilibrium is so high that neighboring markers are found to be significant at similar magnitude and we are not able to discriminate between them. Here, we present a new approach to localize susceptibility genes by combining haplotype sharing-based Mantel statistics with an iterative entropy-based marker selection algorithm. For each marker at which the Mantel statistic is evaluated, the algorithm selects a subset of surrounding markers. The subset is chosen to maximize multilocus linkage disequilibrium, which is measured by the normalized entropy difference introduced by Nothnagel et al. (2002). We evaluated the algorithm with respect to type I error and power. Its ability to localize the disease variant was compared to the localization (i) without marker selection and (ii) considering haplotype block structure. Case-control samples were simulated from a set of 18 haplotypes, consisting of 15 SNPs in two haplotype blocks. The new algorithm gave correct type I error and yielded similar power to detect the disease locus compared to the alternative approaches. The neighboring markers were clearly less often significant than the causal locus, and also less often significant compared to the alternative approaches. Thus the new algorithm improved the precision of the localization of susceptibility genes. Mark M. Iles 123 Section of Epidemiology and Biostatistics, LIMM, University of Leeds, UK Keywords: tSNP, tagging, association, HapMap Tagging SNPs (tSNPs) are commonly used to capture genetic diversity cost-effectively. However, it is important that the efficacy of tSNPs is correctly estimated, otherwise coverage may be insufficient. If the pilot sample from which tSNPs are chosen is too small or the initial marker map too sparse, tSNP efficacy may be overestimated. An existing estimation method based on bootstrapping goes some way to correct for insufficient sample size and overfitting, but does not completely solve the problem. We describe a novel method, based on exclusion of haplotypes, that improves on the bootstrap approach. Using simulated data, the extent of the sample size problem is investigated and the performance of the bootstrap and the novel method are compared. We incorporate an existing method adjusting for marker density by ,SNP-dropping'. We find that insufficient sample size can cause large overestimates in tSNP efficacy, even with as many as 100 individuals, and the problem worsens as the region studied increases in size. Both the bootstrap and novel method correct much of this overestimate, with our novel method consistently outperforming the bootstrap method. We conclude that a combination of insufficient sample size and overfitting may lead to overestimation of tSNP efficacy and underpowering of studies based on tSNPs. Our novel approach corrects for much of this bias and is superior to the previous method. Sample sizes larger than previously suggested may still be required for accurate estimation of tSNP efficacy. This has obvious ramifications for the selection of tSNPs from HapMap data. Claudio Verzilli 1 , Juliet Chapman 1 , Aroon Hingorani 2 , Juan Pablo-Casas 1 , Tina Shah 2 , Liam Smeeth 1 , John Whittaker 124 Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, UK 25 Division of Medicine, University College London, UK Keywords: Meta-analysis, Genetic association studies We present a Bayesian hierarchical model for the meta-analysis of candidate gene studies with a continuous outcome. Such studies often report results from association tests for different, possibly study-specific and non-overlapping markers (typically SNPs) in the same genetic region. Meta analyses of the results at each marker in isolation are seldom appropriate as they ignore the correlation that may exist between markers due to linkage disequlibrium (LD) and cannot assess the relative importance of variants at each marker. Also such marker-wise meta analyses are restricted to only those studies that have typed the marker in question, with a potential loss of power. A better strategy is one which incorporates information about the LD between markers so that any combined estimate of the effect of each variant is corrected for the effect of other variants, as in multiple regression. Here we develop a Bayesian hierarchical linear regression that models the observed genotype group means and uses pairwise LD measurements between markers as prior information to make posterior inference on adjusted effects. The approach is applied to the meta analysis of 24 studies assessing the effect of 7 variants in the C-reactive protein (CRP) gene region on plasma CRP levels, an inflammatory biomarker shown in observational studies to be positively associated with cardiovascular disease. Cathryn M. Lewis 1 , Christopher G. Mathew 1 , Theresa M. Marteau 226 Dept. of Medical and Molecular Genetics, King's College London, UK 27 Department of Psychology, King's College London, UK Keywords: Risk, genetics, CARD15, smoking, model Recently progress has been made in identifying mutations that confer susceptibility to complex diseases, with the potential to use these mutations in determining disease risk. We developed methods to estimate disease risk based on genotype relative risks (for a gene G), exposure to an environmental factor (E), and family history (with recurrence risk ,R for a relative of type R). ,R must be partitioned into the risk due to G (which is modelled independently) and the residual risk. The risk model was then applied to Crohn's disease (CD), a severe gastrointestinal disease for which smoking increases disease risk approximately 2-fold, and mutations in CARD15 confer increased risks of 2.25 (for carriers of a single mutation) and 9.3 (for carriers of two mutations). CARD15 accounts for only a small proportion of the genetic component of CD, with a gene-specific ,S, CARD15 of 1.16, from a total sibling relative risk of ,S= 27. CD risks were estimated for high-risk individuals who are siblings of a CD case, and who also smoke. The CD risk to such individuals who carry two CARD15 mutations is approximately 0.34, and for those carrying a single CARD15 mutation the risk is 0.08, compared to a population prevalence of approximately 0.001. These results imply that complex disease genes may be valuable in estimating with greater precision than has hitherto been possible disease risks in specific, easily identified subgroups of the population with a view to prevention. Yurii Aulchenko 128 Department of Epidemiology & Biostatistics, Erasmus Medical Centre Rotterdam, The Netherlands Keywords: Compression, information, bzip2, genome-wide SNP data, statistical genetics With advances in molecular technology, studies accessing millions of genetic polymorphisms in thousands of study subjects will soon become common. Such studies generate large amounts of data, whose effective storage and management is a challenge to the modern statistical genetics. Standard file compression utilities, such as Zip, Gzip and Bzip2, may be helpful to minimise the storage requirements. Less obvious is the fact that the data compression techniques may be also used in the analysis of genetic data. It is known that the efficiency of a particular compression algorithm depends on the probability structure of the data. In this work, we compared different standard and customised tools using the data from human HapMap project. Secondly, we investigate the potential uses of data compression techniques for the analysis of linkage, association and linkage disequilibrium Suzanne Leal 1 , Bingshan Li 129 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA Keywords: Consanguineous pedigrees, missing genotype data Missing genotype data can increase false-positive evidence for linkage when either parametric or nonparametric analysis is carried out ignoring intermarker linkage disequilibrium (LD). Previously it was demonstrated by Huang et al (2005) that no bias occurs in this situation for affected sib-pairs with unrelated parents when either both parents are genotyped or genotype data is available for two additional unaffected siblings when parental genotypes are missing. However, this is not the case for consanguineous pedigrees, where missing genotype data for any pedigree member within a consanguinity loop can increase false-positive evidence of linkage. The false-positive evidence for linkage is further increased when cryptic consanguinity is present. The amount of false-positive evidence for linkage is highly dependent on which family members are genotyped. When parental genotype data is available, the false-positive evidence for linkage is usually not as strong as when parental genotype data is unavailable. Which family members will aid in the reduction of false-positive evidence of linkage is highly dependent on which other family members are genotyped. For a pedigree with an affected proband whose first-cousin parents have been genotyped, further reduction in the false-positive evidence of linkage can be obtained by including genotype data from additional affected siblings of the proband or genotype data from the proband's sibling-grandparents. When parental genotypes are not available, false-positive evidence for linkage can be reduced by including in the analysis genotype data from either unaffected siblings of the proband or the proband's married-in-grandparents. Najaf Amin 1 , Yurii Aulchenko 130 Department of Epidemiology & Biostatistics, Erasmus Medical Centre Rotterdam, The Netherlands Keywords: Genomic Control, pedigree structure, quantitative traits The Genomic Control (GC) method was originally developed to control for population stratification and cryptic relatedness in association studies. This method assumes that the effect of population substructure on the test statistics is essentially constant across the genome, and therefore unassociated markers can be used to estimate the effect of confounding onto the test statistic. The properties of GC method were extensively investigated for different stratification scenarios, and compared to alternative methods, such as the transmission-disequilibrium test. The potential of this method to correct not for occasional cryptic relations, but for regular pedigree structure, however, was not investigated before. In this work we investigate the potential of the GC method for pedigree-based association analysis of quantitative traits. The power and type one error of the method was compared to standard methods, such as the measured genotype (MG) approach and quantitative trait transmission-disequilibrium test. In human pedigrees, with trait heritability varying from 30 to 80%, the power of MG and GC approach was always higher than that of TDT. GC had correct type 1 error and its power was close to that of MG under moderate heritability (30%), but decreased with higher heritability. William Astle 1 , Chris Holmes 2 , David Balding 131 Department of Epidemiology and Public Health, Imperial College London, UK 32 Department of Statistics, University of Oxford, UK Keywords: Population structure, association studies, genetic epidemiology, statistical genetics In the analysis of population association studies, Genomic Control (Devlin & Roeder, 1999) (GC) adjusts the Armitage test statistic to correct the type I error for the effects of population substructure, but its power is often sub-optimal. Turbo Genomic Control (TGC) generalises GC to incorporate co-variation of relatedness and phenotype, retaining control over type I error while improving power. TGC is similar to the method of Yu et al. (2006), but we extend it to binary (case-control) in addition to quantitative phenotypes, we implement improved estimation of relatedness coefficients, and we derive an explicit statistic that generalizes the Armitage test statistic and is fast to compute. TGC also has similarities to EIGENSTRAT (Price et al., 2006) which is a new method based on principle components analysis. The problems of population structure(Clayton et al., 2005) and cryptic relatedness (Voight & Pritchard, 2005) are essentially the same: if patterns of shared ancestry differ between cases and controls, whether distant (coancestry) or recent (cryptic relatedness), false positives can arise and power can be diminished. With large numbers of widely-spaced genetic markers, coancestry can now be measured accurately for each pair of individuals via patterns of allele-sharing. Instead of modelling subpopulations, we work instead with a coancestry coefficient for each pair of individuals in the study. We explain the relationships between TGC, GC and EIGENSTRAT. We present simulation studies and real data analyses to illustrate the power advantage of TGC in a range of scenarios incorporating both substructure and cryptic relatedness. References Clayton, D. G.et al. (2005) Population structure, differential bias and genomic control in a large-scale case-control association study. Nature Genetics37(11) November 2005. Devlin, B. & Roeder, K. (1999) Genomic control for association studies. Biometics55(4) December 1999. Price, A. L.et al. (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics38(8) (August 2006). Voight, B. J. & Pritchard, J. K. (2005) Confounding from cryptic relatedness in case-control association studies. Public Library of Science Genetics1(3) September 2005. Yu, J.et al. (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics38(2) February 2006. Hervé Perdry 1 , Marie-Claude Babron 1 , Françoise Clerget-Darpoux 133 INSERM U535 and Univ. Paris Sud, UMR-S 535, Villejuif, France Keywords: Modifier genes, case-parents trios, ordered transmission disequilibrium test A modifying locus is a polymorphic locus, distinct from the disease locus, which leads to differences in the disease phenotype, either by modifying the penetrance of the disease allele, or by modifying the expression of the disease. The effect of such a locus is a clinical heterogeneity that can be reflected by the values of an appropriate covariate, such as the age of onset, or the severity of the disease. We designed the Ordered Transmission Disequilibrium Test (OTDT) to test for a relation between the clinical heterogeneity, expressed by the covariate, and marker genotypes of a candidate gene. The method applies to trio families with one affected child and his parents. Each family member is genotyped at a bi-allelic marker M of a candidate gene. To each of the families is associated a covariate value; the families are ordered on the values of this covariate. As the TDT (Spielman et al. 1993), the OTDT is based on the observation of the transmission rate T of a given allele at M. The OTDT aims to find a critical value of the covariate which separates the sample of families in two subsamples in which the transmission rates are significantly different. We investigate the power of the method by simulations under various genetic models and covariate distributions. Acknowledgments H Perdry is funded by ARSEP. Pascal Croiseau 1 , Heather Cordell 2 , Emmanuelle Génin 134 INSERM U535 and University Paris Sud, UMR-S535, Villejuif, France 35 Institute of Human Genetics, Newcastle University, UK Keywords: Association, missing data, conditionnal logistic regression Missing data is an important problem in association studies. Several methods used to test for association need that individuals be genotyped at the full set of markers. Individuals with missing data need to be excluded from the analysis. This could involve an important decrease in sample size and a loss of information. If the disease susceptibility locus (DSL) is poorly typed, it is also possible that a marker in linkage disequilibrium gives a stronger association signal than the DSL. One may then falsely conclude that the marker is more likely to be the DSL. We recently developed a Multiple Imputation method to infer missing data on case-parent trios Starting from the observed data, a few number of complete data sets are generated by Markov-Chain Monte Carlo approach. These complete datasets are analysed using standard statistical package and the results are combined as described in Little & Rubin (2002). Here we report the results of simulations performed to examine, for different patterns of missing data, how often the true DSL gives the highest association score among different loci in LD. We found that multiple imputation usually correctly detect the DSL site even if the percentage of missing data is high. This is not the case for the naďve approach that consists in discarding trios with missing data. In conclusion, Multiple imputation presents the advantage of being easy to use and flexible and is therefore a promising tool in the search for DSL involved in complex diseases. Salma Kotti 1 , Heike Bickeböller 2 , Françoise Clerget-Darpoux 136 University Paris Sud, UMR-S535, Villejuif, France 37 Department of Genetic Epidemiology, Medical School, University of Göttingen, Germany Keywords: Genotype relative risk, internal controls, Family based analyses Family based analyses using internal controls are very popular both for detecting the effect of a genetic factor and for estimating the relative disease risk on the corresponding genotypes. Two different procedures are often applied to reconstitute internal controls. The first one considers one pseudocontrol genotype formed by the parental non-transmitted alleles called also 1:1 matching of alleles, while the second corresponds to three pseudocontrols corresponding to all genotypes formed by the parental alleles except the one of the case (1:3 matching). Many studies have compared between the two procedures in terms of the power and have concluded that the difference depends on the underlying genetic model and the allele frequencies. However, the estimation of the Genotype Relative Risk (GRR) under the two procedures has not been studied. Based on the fact that on the 1:1 matching, the control group is composed of the alleles untransmitted to the affected child and on the 1:3 matching, the control group is composed amongst alleles already transmitted to the affected child, we expect a difference on the GRR estimation. In fact, we suspect that the second procedure leads to biased estimation of the GRRs. We will analytically derive the GRR estimators for the 1:1 and 1:3 matching and will present the results at the meeting. Family based analyses using internal controls are very popular both for detecting the effect of a genetic factor and for estimating the relative disease risk on the corresponding genotypes. Two different procedures are often applied to reconstitute internal controls. The first one considers one pseudocontrol genotype formed by the parental non-transmitted alleles called also 1:1 matching of alleles, while the second corresponds to three pseudocontrols corresponding to all genotypes formed by the parental alleles except the one of the case (1:3 matching). Many studies have compared between the two procedures in terms of the power and have concluded that the difference depends on the underlying genetic model and the allele frequencies. However, the estimation of the Genotype Relative Risk (GRR) under the two procedures has not been studied. Based on the fact that on the 1:1 matching, the control group is composed of the alleles untransmitted to the affected child and on the 1:3 matching, the control group is composed amongst alleles already transmitted to the affected child, we expect a difference on the GRR estimation. In fact, we suspect that the second procedure leads to biased estimation of the GRR. We will analytically derive the GRR estimator for the 1:1 and 1:3 matching and will present the results at the meeting. Luigi Palla 1 , David Siegmund 239 Department of Mathematics,Free University Amsterdam, The Netherlands 40 Department of Statistics, Stanford University, California, USA Keywords: TDT, assortative mating, inbreeding, statistical power A substantial amount of Assortative Mating (AM) is often recorded on physical and psychological, dichotomous as well as quantitative traits that are supposed to have a multifactorial genetic component. In particular AM has the effect of increasing the genetic variance, even more than inbreeding because it acts across loci beside within loci, when the trait has a multifactorial origin. Under the assumption of a polygenic model for AM dating back to Wright (1921) and refined by Crow and Felsenstein (1968,1982), the effect of assortative mating on the power to detect genetic association in the Transmission Disequilibrium Test (TDT) is explored as parameters, such as the effective number of genes and the allelic frequency vary. The power is reflected by the non centrality parameter of the TDT and is expressed as a function of the number of trios, the relative risk of the heterozygous genotype and the allele frequency (Siegmund and Yakir, 2007). The noncentrality parameter of the relevant score statistic is updated considering the effect of AM which is expressed in terms of an ,effective' inbreeding coefficient. In particular, for dichotomous traits it is apparent that the higher the number of genes involved in the trait, the lower the loss in power due to AM. Finally an attempt is made to extend this relation to the Q-TDT (Rabinowitz, 1997), which involves considering the effect of AM also on the phenotypic variance of the trait of interest, under the assumption that AM affects only its additive genetic component. References Crow, & Felsenstein, (1968). The effect of assortative mating on the genetic composition of a population. Eugen.Quart.15, 87,97. Rabinowitz,, 1997. A Transmission Disequilibrium Test for Quantitative Trait Loci. Human Heredity47, 342,350. Siegmund, & Yakir, (2007) Statistics of gene mapping, Springer. Wright, (1921). System of mating.III. Assortative mating based on somatic resemblance. Genetics6, 144,161. Jérémie Nsengimana 1 , Ben D Brown 2 , Alistair S Hall 2 , Jenny H Barrett 141 Leeds Institute of Molecular Medicine, University of Leeds, UK 42 Leeds Institute for Genetics, Health and Therapeutics, University of Leeds, UK Keywords: Inflammatory genes, haplotype, coronary artery disease Genetic Risk of Acute Coronary Events (GRACE) is an initiative to collect cases of coronary artery disease (CAD) and their unaffected siblings in the UK and to use them to map genetic variants increasing disease risk. The aim of the present study was to test the association between CAD and 51 single nucleotide polymorphisms (SNPs) and their haplotypes from 35 inflammatory genes. Genotype data were available for 1154 persons affected before age 66 (including 48% before age 50) and their 1545 unaffected siblings (891 discordant families). Each SNP was tested for association to CAD, and haplotypes within genes or gene clusters were tested using FBAT (Rabinowitz & Laird, 2000). For the most significant results, genetic effect size was estimated using conditional logistic regression (CLR) within STATA adjusting for other risk factors. Haplotypes were assigned using HAPLORE (Zhang et al., 2005), which considers all parental mating types consistent with offspring genotypes and assigns them a probability of occurence. This probability was used in CLR to weight the haplotypes. In the single SNP analysis, several SNPs showed some evidence for association, including one SNP in the interleukin-1A gene. Analysing haplotypes in the interleukin-1 gene cluster, a common 3-SNP haplotype was found to increase the risk of CAD (P = 0.009). In an additive genetic model adjusting for covariates the odds ratio (OR) for this haplotype is 1.56 (95% CI: 1.16-2.10, p = 0.004) for early-onset CAD (before age 50). This study illustrates the utility of haplotype analysis in family-based association studies to investigate candidate genes. References Rabinowitz, D. & Laird, N. M. (2000) Hum Hered50, 211,223. Zhang, K., Sun, F. & Zhao, H. (2005) Bioinformatics21, 90,103. Andrea Foulkes 1 , Recai Yucel 1 , Xiaohong Li 143 Division of Biostatistics, University of Massachusetts, USA Keywords: Haploytpe, high-dimensional, mixed modeling The explosion of molecular level information coupled with large epidemiological studies presents an exciting opportunity to uncover the genetic underpinnings of complex diseases; however, several analytical challenges remain to be addressed. Characterizing the components to complex diseases inevitably requires consideration of synergies across multiple genetic loci and environmental and demographic factors. In addition, it is critical to capture information on allelic phase, that is whether alleles within a gene are in cis (on the same chromosome) or in trans (on different chromosomes.) In associations studies of unrelated individuals, this alignment of alleles within a chromosomal copy is generally not observed. We address the potential ambiguity in allelic phase in this high dimensional data setting using mixed effects models. Both a semi-parametric and fully likelihood-based approach to estimation are considered to account for missingness in cluster identifiers. In the first case, we apply a multiple imputation procedure coupled with a first stage expectation maximization algorithm for parameter estimation. A bootstrap approach is employed to assess sensitivity to variability induced by parameter estimation. Secondly, a fully likelihood-based approach using an expectation conditional maximization algorithm is described. Notably, these models allow for characterizing high-order gene-gene interactions while providing a flexible statistical framework to account for the confounding or mediating role of person specific covariates. The proposed method is applied to data arising from a cohort of human immunodeficiency virus type-1 (HIV-1) infected individuals at risk for therapy associated dyslipidemia. Simulation studies demonstrate reasonable power and control of family-wise type 1 error rates. Vivien Marquard 1 , Lars Beckmann 1 , Jenny Chang-Claude 144 Division of Cancer Epidemiology, German Cancer Research Center (DKFZ) Heidelberg, Germany Keywords: Genotyping errors, type I error, haplotype-based association methods It has been shown in several simulation studies that genotyping errors may have a great impact on the type I error of statistical methods used in genetic association analysis of complex diseases. Our aim was to investigate type I error rates in a case-control study, when differential and non-differential genotyping errors were introduced in realistic scenarios. We simulated case-control data sets, where individual genotypes were drawn from a haplotype distribution of 18 haplotypes with 15 markers in the APM1 gene. Genotyping errors were introduced following the unrestricted and symmetric with 0 edges error models described by Heid et al. (2006). In six scenarios, errors resulted from changes of one allele to another with predefined probabilities of 1%, 2.5% or 10%, respectively. A multiple number of errors per haplotype was possible and could vary between 0 and 15, the number of markers investigated. We examined three association methods: Mantel statistics using haplotype-sharing; a haplotype-specific score test; and Armitage trend test for single markers. The type I error rates were not influenced for any of all the three methods for a genotyping error rate of less than 1%. For higher error rates and differential errors, the type I error of the Mantel statistic was only slightly and of the Armitage trend test moderately increased. The type I error rates of the score test were highly increased. The type I error rates were correct for all three methods for non-differential errors. Further investigations will be carried out with different frequencies of differential error rates and focus on power. Arne Neumann 1 , Dörthe Malzahn 1 , Martina Müller 2 , Heike Bickeböller 145 Department of Genetic Epidemiology, Medical School, University of Göttingen, Germany 46 GSF-National Research Center for Environment and Health, Neuherberg & IBE-Institute of Epidemiology, Ludwig-Maximilians University München, Germany Keywords: Interaction, longitudinal, nonparametric Longitudinal data show the time dependent course of phenotypic traits. In this contribution, we consider longitudinal cohort studies and investigate the association between two candidate genes and a dependent quantitative longitudinal phenotype. The set-up defines a factorial design which allows us to test simultaneously for the overall gene effect of the loci as well as for possible gene-gene and gene time interaction. The latter would induce genetically based time-profile differences in the longitudinal phenotype. We adopt a non-parametric statistical test to genetic epidemiological cohort studies and investigate its performance by simulation studies. The statistical test was originally developed for longitudinal clinical studies (Brunner, Munzel, Puri, 1999 J Multivariate Anal 70:286-317). It is non-parametric in the sense that no assumptions are made about the underlying distribution of the quantitative phenotype. Longitudinal observations belonging to the same individual can be arbitrarily dependent on one another for the different time points whereas trait observations of different individuals are independent. The two loci are assumed to be statistically independent. Our simulations show that the nonparametric test is comparable with ANOVA in terms of power of detecting gene-gene and gene-time interaction in an ANOVA favourable setting. Rebecca Hein 1 , Lars Beckmann 1 , Jenny Chang-Claude 147 Division of Cancer Epidemiology, German Cancer Research Center (DKFZ) Heidelberg, Germany Keywords: Indirect association studies, interaction effects, linkage disequilibrium, marker allele frequency Association studies accounting for gene-environment interactions (GxE) may be useful for detecting genetic effects and identifying important environmental effect modifiers. Current technology facilitates very dense marker spacing in genetic association studies; however, the true disease variant(s) may not be genotyped. In this situation, an association between a gene and a phenotype may still be detectable, using genetic markers associated with the true disease variant(s) (indirect association). Zondervan and Cardon [2004] showed that the odds ratios (OR) of markers which are associated with the disease variant depend highly on the linkage disequilibrium (LD) between the variant and the markers, and whether the allele frequencies match and thereby influence the sample size needed to detect genetic association. We examined the influence of LD and allele frequencies on the sample size needed to detect GxE in indirect association studies, and provide tables for sample size estimation. For discordant allele frequencies and incomplete LD, sample sizes can be unfeasibly large. The influence of both factors is stronger for disease loci with small rather than moderate to high disease allele frequencies. A decline in D' of e.g. 5% has less impact on sample size than increasing the difference in allele frequencies by the same percentage. Assuming 80% power, large interaction effects can be detected using smaller sample sizes than those needed for the detection of main effects. The detection of interaction effects involving rare alleles may not be possible. Focussing only on marker density can be a limited strategy in indirect association studies for GxE. Cyril Dalmasso 1 , Emmanuelle Génin 2 , Catherine Bourgain 2 , Philippe Broët 148 JE 2492 , Univ. Paris-Sud, France 49 INSERM UMR-S 535 and University Paris Sud, Villejuif, France Keywords: Linkage analysis, Multiple testing, False Discovery Rate, Mixture model In the context of genome-wide linkage analyses, where a large number of statistical tests are simultaneously performed, the False Discovery Rate (FDR) that is defined as the expected proportion of false discoveries among all discoveries is nowadays widely used for taking into account the multiple testing problem. Other related criteria have been considered such as the local False Discovery Rate (lFDR) that is a variant of the FDR giving to each test its own measure of significance. The lFDR is defined as the posterior probability that a null hypothesis is true. Most of the proposed methods for estimating the lFDR or the FDR rely on distributional assumption under the null hypothesis. However, in observational studies, the empirical null distribution may be very different from the theoretical one. In this work, we propose a mixture model based approach that provides estimates of the lFDR and the FDR in the context of large-scale variance component linkage analyses. In particular, this approach allows estimating the empirical null distribution, this latter being a key quantity for any simultaneous inference procedure. The proposed method is applied on a real dataset. Arief Gusnanto 1 , Frank Dudbridge 150 MRC Biostatistics Unit, Cambridge UK Keywords: Significance, genome-wide, association, permutation, multiplicity Genome-wide association scans have introduced statistical challenges, mainly in the multiplicity of thousands of tests. The question of what constitutes a significant finding remains somewhat unresolved. Permutation testing is very time-consuming, whereas Bayesian arguments struggle to distinguish direct from indirect association. It seems attractive to summarise the multiplicity in a simple form that allows users to avoid time-consuming permutations. A standard significance level would facilitate reporting of results and reduce the need for permutation tests. This is potentially important because current scans do not have full coverage of the whole genome, and yet, the implicit multiplicity is genome-wide. We discuss some proposed summaries, with reference to the empirical null distribution of the multiple tests, approximated through a large number of random permutations. Using genome-wide data from the Wellcome Trust Case-Control Consortium, we use a sub-sampling approach with increasing density to estimate the nominal p-value to obtain family-wise significance of 5%. The results indicate that the significance level is converging to about 1e-7 as the marker spacing becomes infinitely dense. We considered the concept of an effective number of independent tests, and showed that when used in a Bonferroni correction, the number varies with the overall significance level, but is roughly constant in the region of interest. We compared several estimators of the effective number of tests, and showed that in the region of significance of interest, Patterson's eigenvalue based estimator gives approximately the right family-wise error rate. Michael Nothnagel 1 , Amke Caliebe 1 , Michael Krawczak 151 Institute of Medical Informatics and Statistics, University Clinic Schleswig-Holstein, University of Kiel, Germany Keywords: Association scans, Bayesian framework, posterior odds, genetic risk, multiplicative model Whole-genome association scans have been suggested to be a cost-efficient way to survey genetic variation and to map genetic disease factors. We used a Bayesian framework to investigate the posterior odds of a genuine association under multiplicative disease models. We demonstrate that the p value alone is not a sufficient means to evaluate the findings in association studies. We suggest that likelihood ratios should accompany p values in association reports. We argue, that, given the reported results of whole-genome scans, more associations should have been successfully replicated if the consistently made assumptions about considerable genetic risks were correct. We conclude that it is very likely that the vast majority of relative genetic risks are only of the order of 1.2 or lower. Clive Hoggart 1 , Maria De Iorio 1 , John Whittakker 2 , David Balding 152 Department of Epidemiology and Public Health, Imperial College London, UK 53 Department of Epidemiology and Public Health, London School of Hygiene and Tropical Medicine, UK Keywords: Genome-wide association analyses, shrinkage priors, Lasso Testing one SNP at a time does not fully realise the potential of genome-wide association studies to identify multiple causal variants of small effect, which is a plausible scenario for many complex diseases. Moreover, many simulation studies assume a single causal variant and so more complex realities are ignored. Analysing large numbers of variants simultaneously is now becoming feasible, thanks to developments in Bayesian stochastic search methods. We pose the problem of SNP selection as variable selection in a regression model. In contrast to single SNP tests this approach simultaneously models the effect of all SNPs. SNPs are selected by a Bayesian interpretation of the lasso (Tibshirani, 1996); the maximum a posterior (MAP) estimate of the regression coefficients, which have been given independent, double exponential prior distributions. The double exponential distribution is an example of a shrinkage prior, MAP estimates with shrinkage priors can be zero, thus all SNPs with non zero regression coefficients are selected. In addition to the commonly-used double exponential (Laplace) prior, we also implement the normal exponential gamma prior distribution. We show that use of the Laplace prior improves SNP selection in comparison with single -SNP tests, and that the normal exponential gamma prior leads to a further improvement. Our method is fast and can handle very large numbers of SNPs: we demonstrate its performance using both simulated and real genome-wide data sets with 500 K SNPs, which can be analysed in 2 hours on a desktop workstation. Mickael Guedj 1,2 , Jerome Wojcik 2 , Gregory Nuel 154 Laboratoire Statistique et Génome, Université d'Evry, Evry France 55 Serono Pharmaceutical Research Institute, Plan-les-Ouates, Switzerland Keywords: Local Replication, Local Score, Association In gene-mapping, replication of initial findings has been put forwards as the approach of choice for filtering false-positives from true signals for underlying loci. In practice, such replications are however too poorly observed. Besides the statistical and technical-related factors (lack of power, multiple-testing, stratification, quality control,) inconsistent conclusions obtained from independent populations might result from real biological differences. In particular, the high degree of variation in the strength of LD among populations of different origins is a major challenge to the discovery of genes. Seeking for Local Replications (defined as the presence of a signal of association in a same genomic region among populations) instead of strict replications (same locus, same risk allele) may lead to more reliable results. Recently, a multi-markers approach based on the Local Score statistic has been proposed as a simple and efficient way to select candidate genomic regions at the first stage of genome-wide association studies. Here we propose an extension of this approach adapted to replicated association studies. Based on simulations, this method appears promising. In particular it outperforms classical simple-marker strategies to detect modest-effect genes. Additionally it constitutes, to our knowledge, a first framework dedicated to the detection of such Local Replications. Juliet Chapman 1 , Claudio Verzilli 1 , John Whittaker 156 Department of Epidemiology and Public Health, London School of Hygiene and Tropical Medicine, UK Keywords: FDR, Association studies, Bayesian model selection As genomewide association studies become commonplace there is debate as to how such studies might be analysed and what we might hope to gain from the data. It is clear that standard single locus approaches are limited in that they do not adjust for the effects of other loci and problematic since it is not obvious how to adjust for multiple comparisons. False discovery rates have been suggested, but it is unclear how well these will cope with highly correlated genetic data. We consider the validity of standard false discovery rates in large scale association studies. We also show that a Bayesian procedure has advantages in detecting causal loci amongst a large number of dependant SNPs and investigate properties of a Bayesian FDR. Peter Kraft 157 Harvard School of Public Health, Boston USA Keywords: Gene-environment interaction, genome-wide association scans Appropriately analyzed two-stage designs,where a subset of available subjects are genotyped on a genome-wide panel of markers at the first stage and then a much smaller subset of the most promising markers are genotyped on the remaining subjects,can have nearly as much power as a single-stage study where all subjects are genotyped on the genome-wide panel yet can be much less expensive. Typically, the "most promising" markers are selected based on evidence for a marginal association between genotypes and disease. Subsequently, the few markers found to be associated with disease at the end of the second stage are interrogated for evidence of gene-environment interaction, mainly to understand their impact on disease etiology and public health impact. However, this approach may miss variants which have a sizeable effect restricted to one exposure stratum and therefore only a modest marginal effect. We have proposed to use information on the joint effects of genes and a discrete list of environmental exposures at the initial screening stage to select promising markers for the second stage [Kraft et al Hum Hered 2007]. This approach optimizes power to detect variants that have a sizeable marginal effect and variants that have a small marginal effect but a sizeable effect in a stratum defined by an environmental exposure. As an example, I discuss a proposed genome-wide association scan for Type II diabetes susceptibility variants based in several large nested case-control studies. Beate Glaser 1 , Peter Holmans 158 Biostatistics and Bioinformatics Unit, Cardiff University, School of Medicine, Heath Park, Cardiff, UK Keywords: Combined case-control and trios analysis, Power, False-positive rate, Simulation, Association studies The statistical power of genetic association studies can be enhanced by combining the analysis of case-control with parent-offspring trio samples. Various combined analysis techniques have been recently developed; as yet, there have been no comparisons of their power. This work was performed with the aim of identifying the most powerful method among available combined techniques including test statistics developed by Kazeem and Farrall (2005), Nagelkerke and colleagues (2004) and Dudbridge (2006), as well as a simple combination of ,2-statistics from single samples. Simulation studies were performed to investigate their power under different additive, multiplicative, dominant and recessive disease models. False-positive rates were determined by studying the type I error rates under null models including models with unequal allele frequencies between the single case-control and trios samples. We identified three techniques with equivalent power and false-positive rates, which included modifications of the three main approaches: 1) the unmodified combined Odds ratio estimate by Kazeem & Farrall (2005), 2) a modified approach of the combined risk ratio estimate by Nagelkerke & colleagues (2004) and 3) a modified technique for a combined risk ratio estimate by Dudbridge (2006). Our work highlights the importance of studies investigating test performance criteria of novel methods, as they will help users to select the optimal approach within a range of available analysis techniques. David Almorza 1 , M.V. Kandus 2 , Juan Carlos Salerno 2 , Rafael Boggio 359 Facultad de Ciencias del Trabajo, University of Cádiz, Spain 60 Instituto de Genética IGEAF, Buenos Aires, Argentina 61 Universidad Nacional de La Plata, Buenos Aires, Argentina Keywords: Principal component analysis, maize, ear weight, inbred lines The objective of this work was to evaluate the relationship among different traits of the ear of maize inbred lines and to group genotypes according to its performance. Ten inbred lines developed at IGEAF (INTA Castelar) and five public inbred lines as checks were used. A field trial was carried out in Castelar, Buenos Aires (34° 36' S , 58° 39' W) using a complete randomize design with three replications. At harvest, individual weight (P.E.), diameter (D.E.), row number (N.H.) and length (L.E.) of the ear were assessed. A principal component analysis, PCA, (Infostat 2005) was used, and the variability of the data was depicted with a biplot. Principal components 1 and 2 (CP1 and CP2) explained 90% of the data variability. CP1 was correlated with P.E., L.E. and D.E., meanwhile CP2 was correlated with N.H. We found that individual weight (P.E.) was more correlated with diameter of the ear (D.E.) than with length (L.E). Five groups of inbred lines were distinguished: with high P.E. and mean N.H. (04-70, 04-73, 04-101 and MO17), with high P.E. but less N.H. (04-61 and B14), with mean P.E. and N.H. (B73, 04-123 and 04-96), with high N.H. but less P.E. (LP109, 04-8, 04-91 and 04-76) and with low P.E. and low N.H. (LP521 and 04-104). The use of PCA showed which variables had more incidence in ear weight and how is the correlation among them. Moreover, the different groups found with this analysis allow the evaluation of inbred lines by several traits simultaneously. Sven Knüppel 1 , Anja Bauerfeind 1 , Klaus Rohde 162 Department of Bioinformatics, MDC Berlin, Germany Keywords: Haplotypes, association studies, case-control, nuclear families The area of gene chip technology provides a plethora of phase-unknown SNP genotypes in order to find significant association to some genetic trait. To circumvent possibly low information content of a single SNP one groups successive SNPs and estimates haplotypes. Haplotype estimation, however, may reveal ambiguous haplotype pairs and bias the application of statistical methods. Zaykin et al. (Hum Hered, 53:79-91, 2002) proposed the construction of a design matrix to take this ambiguity into account. Here we present a set of functions written for the Statistical package R, which carries out haplotype estimation on the basis of the EM-algorithm for individuals (case-control) or nuclear families. The construction of a design matrix on basis of estimated haplotypes or haplotype pairs allows application of standard methods for association studies (linear, logistic regression), as well as statistical methods as haplotype sharing statistics and TDT-Test. Applications of these methods to genome-wide association screens will be demonstrated. Manuela Zucknick 1 , Chris Holmes 2 , Sylvia Richardson 163 Department of Epidemiology and Public Health, Imperial College London, UK 64 Department of Statistics, Oxford Center for Gene Function, University of Oxford, UK Keywords: Bayesian, variable selection, MCMC, large p, small n, structured dependence In large-scale genomic applications vast numbers of markers or genes are scanned to find a few candidates which are linked to a particular phenotype. Statistically, this is a variable selection problem in the "large p, small n" situation where many more variables than samples are available. An additional feature is the complex dependence structure which is often observed among the markers/genes due to linkage disequilibrium or their joint involvement in biological processes. Bayesian variable selection methods using indicator variables are well suited to the problem. Binary phenotypes like disease status are common and both Bayesian probit and logistic regression can be applied in this context. We argue that logistic regression models are both easier to tune and to interpret than probit models and implement the approach by Holmes & Held (2006). Because the model space is vast, MCMC methods are used as stochastic search algorithms with the aim to quickly find regions of high posterior probability. In a trade-off between fast-updating but slow-moving single-gene Metropolis-Hastings samplers and computationally expensive full Gibbs sampling, we propose to employ the dependence structure among the genes/markers to help decide which variables to update together. Also, parallel tempering methods are used to aid bold moves and help avoid getting trapped in local optima. Mixing and convergence of the resulting Markov chains are evaluated and compared to standard samplers in both a simulation study and in an application to a gene expression data set. Reference Holmes, C. C. & Held, L. (2006) Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Analysis1, 145,168. Dawn Teare 165 MMGE, University of Sheffield, UK Keywords: CNP, family-based analysis, MCMC Evidence is accumulating that segmental copy number polymorphisms (CNPs) may represent a significant portion of human genetic variation. These highly polymorphic systems require handling as phenotypes rather than co-dominant markers, placing new demands on family-based analyses. We present an integrated approach to meet these challenges in the form of a graphical model, where the underlying discrete CNP phenotype is inferred from the (single or replicate) quantitative measure within the analysis, whilst assuming an allele based system segregating through the pedigree. [source]


    Analysis of maternal,offspring HLA compatibility, parent-of-origin effects, and noninherited maternal antigen effects for HLA,DRB1 in systemic lupus erythematosus

    ARTHRITIS & RHEUMATISM, Issue 6 2010
    Paola G. Bronson
    Objective Genetic susceptibility to systemic lupus erythematosus (SLE) is well established, with the HLA class II DRB1 and DQB1 loci demonstrating the strongest association. However, HLA may also influence SLE through novel biologic mechanisms in addition to genetic transmission of risk alleles. Evidence for increased maternal,offspring HLA class II compatibility in SLE and differences in maternal versus paternal transmission rates (parent-of-origin effects) and nontransmission rates (noninherited maternal antigen [NIMA] effects) in other autoimmune diseases have been reported. Thus, we investigated maternal,offspring HLA compatibility, parent-of-origin effects, and NIMA effects at DRB1 in SLE. Methods The cohort comprised 707 SLE families and 188 independent healthy maternal,offspring pairs (total of 2,497 individuals). Family-based association tests were conducted to compare transmitted versus nontransmitted alleles (transmission disequilibrium test) and both maternally versus paternally transmitted (parent-of-origin) and nontransmitted alleles (using the chi-square test of heterogeneity). Analyses were stratified according to the sex of the offspring. Maternally affected offspring DRB1 compatibility in SLE families was compared with paternally affected offspring compatibility and with independent control maternal,offspring pairs (using Fisher's test) and was restricted to male and nulligravid female offspring with SLE. Results As expected, DRB1 was associated with SLE (P < 1 × 10,4). However, mothers of children with SLE had similar transmission and nontransmission frequencies for DRB1 alleles when compared with fathers, including those for the known SLE risk alleles HLA,DRB1*0301, *1501, and *0801. No association between maternal,offspring compatibility and SLE was observed. Conclusion Maternal,offspring HLA compatibility, parent-of-origin effects, and NIMA effects at DRB1 are unlikely to play a role in SLE. [source]


    A common ABCC2 promoter polymorphism is not a determinant of the risk of spina bifida ,

    BIRTH DEFECTS RESEARCH, Issue 6 2004
    Liselotte E. Jensen
    Abstract BACKGROUND There is compelling evidence that the risk of spina bifida, a malformation of the caudal neural tube, is associated with maternal and/or embryonic disturbances in folate/homocysteine metabolism. Hence, functional variants of genes that influence folate/homocysteine metabolism constitute a biologically plausible group of candidate risk factors for spina bifida and other neural tube defects. One such candidate is ABCC2, the gene encoding ABCC2, (a.k.a. canalicular multispecific organic anion transporter [cMOAT], multidrug resistance related protein 2 [MRP2]), a member of the ABC transporter family that effluxes natural folates and anti-folate drugs such as methotrexate. METHODS The association between the risk of spina bifida and both the maternal and embryonic ABCC2 C(,24)T genotype was evaluated by using the transmission disequilibrium test and log-linear modeling. RESULTS These analyses provided no evidence that the risk of spina bifida was significantly related to either the maternal or embryonic ABCC2 C(,24)T genotype. CONCLUSIONS The results of the present analyses suggest that the C(,24)T variant of the ABCC2 gene is not a major determinant of spina bifida risk. Birth Defects Research (Part A), 2004. © 2004 Wiley-Liss, Inc. [source]


    Testicular carcinoma and HLA Class II genes

    CANCER, Issue 9 2002
    Dirk J. A. Sonneveld M.D., Ph.D.
    Abstract BACKGROUND The association with histocompatibility antigens (HLA), in particular Class II genes (DQB1, DRB1), has recently been suggested to be one of the genetic factors involved in testicular germ cell tumor (TGCT) development. The current study, which uses genotyping of microsatellite markers, was designed to replicate previous associations. METHODS In 151 patients, along with controls comprising parents or spouses, the HLA region (particularly Class II) on chromosome 6p21 was genotyped for a set of 15 closely linked microsatellite markers. RESULTS In both patients and controls, strong linkage disequilibrium was observed in the genotyped region, indicating that similar haplotypes are likely to be identical by descent. However, association analysis and the transmission disequilibrium test did not show significant results. Haplotype sharing statistics, a haplotype method that derives extra information from phase and single marker tests, did not show differences in haplotype sharing between patients and controls. CONCLUSION The current genotyping study did not confirm the previously reported association between HLA Class II genes and TGCT. As the HLA alleles for which associations were reported are also prevalent in the Dutch populations, these associations are likely to be nonexistent or much weaker than previously reported. Cancer 2002;95:1857,63. © 2002 American Cancer Society. DOI 10.1002/cncr.10903 [source]


    Chromosome 7p linkage and GPR154 gene association in Italian families with allergic asthma

    CLINICAL & EXPERIMENTAL ALLERGY, Issue 1 2007
    G. Malerba
    Summary Background Several genome scans have reported linkage of markers on chromosome 7p with asthma and related phenotypes in different populations. A fine mapping in Finnish and French-Canadian populations has associated the GPR154 gene (also known as G-protein-coupled receptor for asthma susceptibility, GPRA) with elevated IgE or asthma. Objective To confirm chromosome 7p linkage and candidate gene association in Italian families with atopic asthma. Methods In a two-phase approach, we first performed a linkage analysis of chromosome 7, and then a family-based association study on the GPR154 gene for allergic asthma phenotypes in the Italian population. Results The screening of 117 families with 19 microsatellite markers showed potential linkage for elevated IgE (P<0.002 at 22 cM from p-ter), asthma (P<0.005 at 44 cM), or atopy (P<0.005 at 54 cM). In the second phase of the present study, candidate gene GPR154, which is located in the phase one-linked region, was investigated in 211 families with seven single nucleotide polymorphisms (SNPs) that tag most haplotype variability, by the pedigree disequilibrium test. Elevated IgE levels were associated with two GPR154 gene SNPs (SNP 546333, P=0.0046; rs740 347, P=0.006), and with haplotypes in the global test (P=0.013). Haplotype analysis performed in nuclear families having at least 1 asthmatic parent showed a significant association with asthma (P=0.0173), atopy (P=0.0058), SPT (P=0.0025), and bronchial hyper reactivity (P=0.0163). Conclusion These results support a susceptibility locus for asthma and related phenotypes on chromosome 7, and are in agreement with recent reports suggesting that a common susceptibility factor for atopic manifestations in asthma is likely conferred by the locus containing the GPR154 gene. [source]


    Mutation screening of interferon regulatory factor 1 gene (IRF-1) as a candidate gene for atopy/asthma

    CLINICAL & EXPERIMENTAL ALLERGY, Issue 11 2000
    E. Noguchi
    Background IL-4 gene cluster on chromosome 5 contains several candidate genes for atopy and asthma. Several independent studies have shown evidence for linkage between the markers flanking IL-4 gene cluster and asthma and/or asthma-related traits. Interferon regulatory factor 1 (IRF-1) is located approximately 300 kb telomeric to IL-4 and recent study reveals that IRF-1 deficiency results in an elevated production of Th2-related cytokines and a compensatory decrease in the expression of native cell- and Th1-related cytokines. Objective To determine if there are any mutations associated with the development of atopy and asthma present in the coding exons and 5, flanking region of the IRF-1 gene. Methods and results We have screened the promoter and coding regions of the IRF-1 gene in atopic asthmatics and controls by SSCP method. We found three novel nuclear variants (the ,300G/T and 4396 A/G polymorphisms and the 6355G > A rare variant) in the IRF-1 gene. No variants causing amino acid alterations of IRF-1 were detected. The ,300G/T polymorphism was in nearly complete linkage disequilibrium with the 4396 A/G polymorphism. An association between the 4396 A > G polymorphism and atopy/asthma was examined by transmission disequilibrium test in 81 asthmatic families. Either of 4396 A or 4396G alleles was not significantly preferentially transmitted to atopy- or asthma-affected children. Conclusion The IRF-1 gene is less likely to play a substantial role in the development of atopy and asthma in the Japanese population. [source]


    Investigation of the eotaxin gene ,426C,T, ,384A,G and 67G,A single-nucleotide polymorphisms and atopic dermatitis in Italian children using family-based association methods

    CLINICAL & EXPERIMENTAL DERMATOLOGY, Issue 3 2008
    L. Rigoli
    Summary Background., Eotaxin plays an important role in atopic dermatitis (AD) as a potent chemoattractant and activator of eosinophils and T-helper 2 lymphocytes. Aim., To investigate whether single-nucleotide polymorphisms of the eotaxin gene are associated with AD, we investigated the genotype and allelic frequencies of ,426C,T, ,384A,G, and 67G,A SNPs in 130 Italian families. Methods., In total, 130 children with either the extrinsic allergic or intrinsic nonallergic forms of AD (EAD and IAD) were recruited from 130 families. Genotyping was performed using PCR and restriction fragment length polymorphism analysis. Results., A significant difference was observed in the genotype frequency of the ,426C,T SNP between children with EAD and those with IAD (P = 0.01), and between children with EAD and controls (P = 0.01). The allele frequencies of the ,426C,T SNP were significantly different between children with EAD and those with IAD (P < 0.01), and between children with EAD and controls (P < 0.01). For children with EAD, the genotype frequency of the ,426C,T SNP was no different between the groups with mild, moderate and severe SCORAD (P = NS). No significant association was observed between the ,384A,G and 67G,A SNPs and the two groups of children with EAD and IAD compared with the control group. In 32 trios selected from 68 EAD families, the transmission disequilibrium test showed a preferential transmission of the ,426T allele from the parents to affected offspring (P < 0.01). Conclusions., Our results suggest that in our group of children with AD, the eotaxin gene may play a crucial role in the development of extrinsic AD, probably with other genetic factors. [source]


    Genetic profiling of the Azores Islands (Portugal): Data from 10 X-chromosome STRs

    AMERICAN JOURNAL OF HUMAN BIOLOGY, Issue 2 2010
    Francisca Silva
    The populations from the Azores islands have been the target of several genetic studies, using data derived from monoparental and recombining genetic systems. These studies have provided a complex picture of the genetic landscape of the three groups of Azorean islands, and further data are required to assess its genetic profile. We present a study of the polymorphism in 10 X-chromosome STR loci (DSXS8378, DXS9898, DXS7133, GATA31E08, GATA172D05, DXS7423, DXS6809, DXS7132, DXS9902, DXS6789) conducted on a total of 304 chromosomes (97 females and 110 males) of unrelated individuals with Azorean ancestry. Average gene diversity was 74.47%, ranging from 66.21% (DXS7133) to 81.19% (GATA172D05). No shared haplotypes were found. Genotype frequencies among females displayed conformity with Hardy-Weinberg expectations for all loci. Pairwise linkage disequilibrium tests did not reveal evidences of association between the studied markers. Significant differences in allelic frequencies between the Western and the Eastern group of islands are in agreement with previous results from mitochondrial DNA and Y chromosome studies, providing further evidence that the Azores cannot be considered an homogeneous population. Moreover, differences between the Western group and the North of Portugal are also reported, supporting the pertinence of a specific database for the Azores populations, on what concerns the genetic markers analyzed. Am. J. Hum. Biol., 2010. © 2009 Wiley-Liss, Inc. [source]


    Osteoprotegerin Plasma Levels are Strongly Associated with Polymorphisms in Human Homologue of the Mouse Progressive Ankylosis (ANKH) Gene

    ANNALS OF HUMAN GENETICS, Issue 3 2007
    Y. Vistoropsky
    Summary Osteoprotegerin inhibits osteoclastogenesis and plays an important role in the control of bone resorption. However, the genetic mechanisms underlying regulation of OPG levels are currently not fully elucidated. The aim of the present study was to determine whether the ANKH gene, which plays a central role in bone mineralization, contributes to the genetic regulation of OPG levels. A family-based association study used a sample of 159 ethnically homogeneous nuclear families, comprising 556 apparently healthy individuals. Statistical analyses included family aggregation analysis of OPG variation and four types of transmission disequilibrium tests. Each individual was genotyped for 11 SNPs in the ANKH gene. Four TDTs consistently showed a highly significant association between OPG levels and the intronic SNP rs875525 located between exons 6 and 7. The combined p-value for four tests to reject the null hypothesis of no association was 0.0003. Furthermore, haplotypes generated between rs875525 and two additional neighbouring SNPs (rs2291943 and rs2288474) also revealed a significant association with OPG plasma levels (p < 10,4 -10,3). ANKH genetic polymorphisms in the area between SNP rs2291943 and rs2288474 are strongly associated with OPG plasma levels. The molecular mechanism underlying this association is not obvious, and therefore these results should be regarded cautiously until they are confirmed in independent studies. [source]