Home About us Contact | |||
Differentiation Events (differentiation + event)
Selected AbstractsRNA expression microarray analysis in mouse prospermatogonia: Identification of candidate epigenetic modifiers,DEVELOPMENTAL DYNAMICS, Issue 4 2008Christophe Lefèvre Abstract The mammalian totipotent and pluripotent lineage exhibits genome-wide dynamics with respect to DNA methylation content. The first phase of global DNA demethylation and de novo remethylation occurs during preimplantation development and gastrulation, respectively, while the second phase occurs in primordial germ cells and primary oocytes/prospermatogonia, respectively. These dynamics are indicative of a comprehensive epigenetic resetting or reprogramming of the genome in preparation for major differentiation events. To gain further insight into the mechanisms driving DNA methylation dynamics and other types of epigenetic modification, we performed an RNA expression microarray analysis of fetal prospermatogonia at the stage when they are undergoing rapid de novo DNA remethylation. We have identified a number of highly or specifically expressed genes that could be important for determining epigenetic change in prospermatogonia. These data provide a useful resource in the discovery of molecular pathways involved in epigenetic reprogramming in the mammalian germ line. Developmental Dynamics 237:1082,1089, 2008. © 2008 Wiley-Liss, Inc. [source] Redox Reactions and Electron Transfer Across the Red Cell MembraneIUBMB LIFE, Issue 7 2003Eleanor Kennett Abstract Plasma membrane electron transport systems appear to be ubiquitous. These systems are implicated in hormone signal transduction, cell growth and differentiation events as well as protection from oxidative stress. The red blood cell is constantly exposed to oxidative stress; protection against the reactive species generated during this process may be the main role of its membrane electron transport systems. Membrane redox activity has been studied for over three-quarters of a century, and yet many questions remain regarding its identity and likely roles: are electron transfers by distinct and specific mechanisms; what are the physiological donors and acceptors; and how do these systems affect metabolism? Current evidence suggests that the human erythrocyte membrane contains a number of distinct electron transfer systems, some of which, at least, involve membrane proteins, and NADH or ascorbate as electron donors. The activity of these systems appears to be closely related to the metabolic state of the cell, suggesting that mediation of reducing equivalents across the plasma membrane allows redox buffering of each environment, intra- and extracellular, by the other. We have decided to study this from a new perspective, NMR spectroscopy the area of our own technical expertise, hence this review is slanted towards this more recent analysis. IUBMB Life, 55: 375-385, 2003 [source] Oxysterol-induced osteogenic differentiation of marrow stromal cells is regulated by Dkk-1 inhibitable and PI3-kinase mediated signalingJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2008Christopher M. Amantea Abstract Osteoporosis and its complications cause morbidity and mortality in the aging population, and result from increased bone resorption by osteoclasts in parallel with decreased bone formation by osteoblasts. A widely accepted strategy for improving bone health is targeting osteoprogenitor cells in order to stimulate their osteogenic differentiation and bone forming properties through the use of osteoinductive/anabolic factors. We previously reported that specific naturally occurring oxysterols have potent osteoinductive properties, mediated in part through activation of hedgehog signaling in osteoprogenitor cells. In the present report, we further demonstrate the molecular mechanism(s) by which oxysterols induce osteogenesis. In addition to activating the hedgehog signaling pathway, oxysterol-induced osteogenic differentiation is mediated through a Wnt signaling-related, Dkk-1-inhibitable mechanism. Bone marrow stromal cells (MSC) treated with oxysterols demonstrated increased expression of osteogenic differentiation markers, along with selective induced expression of Wnt target genes. These oxysterol effects, which occurred in the absence of ,-catenin accumulation or TCF/Lef activation, were inhibited by the hedgehog pathway inhibitor, cyclopamine, and/or by the Wnt pathway inhibitor, Dkk-1. Furthermore, the inhibitors of PI3-Kinase signaling, LY 294002 and wortmanin, inhibited oxysterol-induced osteogenic differentiation and induction of Wnt signaling target genes. Finally, activators of canonical Wnt signaling, Wnt3a and Wnt1, inhibited spontaneous, oxysterol-, and Shh-induced osteogenic differentiation of bone marrow stromal cells, suggesting the involvement of a non-canonical Wnt pathway in pro-osteogenic differentiation events. Osteogenic oxysterols are, therefore, important small molecule modulators of critical signaling pathways in pluripotent mesenchymal cells that regulate numerous developmental and post-developmental processes. J. Cell. Biochem. 105: 424,436, 2008. © 2008 Wiley-Liss, Inc. [source] Playing with bone and fatJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2006Jeffrey M. Gimble Abstract The relationship between bone and fat formation within the bone marrow microenvironment is complex and remains an area of active investigation. Classical in vitro and in vivo studies strongly support an inverse relationship between the commitment of bone marrow-derived mesenchymal stem cells or stromal cells to the adipoctye and osteoblast lineage pathways. In this review, we focus on the recent literature exploring the mechanisms underlying these differentiation events and discuss their implications relevant to osteoporosis and regenerative medicine. J. Cell. Biochem. 98: 251,266, 2006. © 2006 Wiley-Liss, Inc. [source] Evidences of a role for eukaryotic translation initiation factor 5A (eIF5A) in mouse embryogenesis and cell differentiationJOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2010Lucas T. Parreiras-e-Silva Eukaryotic translation initiation factor 5A (eIF5A) has a unique character: the presence of an unusual amino acid, hypusine, which is formed by post-translational modifications. Even before the identification of hypusination in eIF5A, the correlation between hypusine formation and protein synthesis, shifting cell proliferation rates, had already been observed. Embryogenesis is a complex process in which cellular proliferation and differentiation are intense. In spite of the fact that many studies have described possible functions for eIF5A, its precise role is under investigation, and to date nothing has been reported about its participation in embryonic development. In this study we show that eIF5A is expressed at all mouse embryonic post-implantation stages with increase in eIF5A mRNA and protein expression levels between embryonic days E10.5 and E13.5. Immunohistochemistry revealed the ubiquitous presence of eIF5A in embryonic tissues and organs at E13.5 day. Interestingly, stronger immunoreactivity to eIF5A was observed in the stomodeum, liver, ectoderm, heart, and eye, and the central nervous system; regions which are known to undergo active differentiation at this stage, suggesting a role of eIF5A in differentiation events. Expression analyses of MyoD, a myogenic transcription factor, revealed a significantly higher expression from day E12.5 on, both at the mRNA and the protein levels suggesting a possible correlation to eIF5A. Accordingly, we next evidenced that inhibiting eIF5A hypusination in mouse myoblast C2C12 cells impairs their differentiation into myotubes and decreases MyoD transcript levels. Those results point to a new functional role for eIF5A, relating it to embryogenesis, development, and cell differentiation. J. Cell. Physiol. 225: 500,505, 2010. © 2010 Wiley-Liss, Inc. [source] Control of asymmetric cell divisions: will cnidarians provide an answer?BIOESSAYS, Issue 9 2004Thomas C.G. Bosch Cells in the basal metazoan phylum Cnidaria are characterized by remarkable plasticity in their differentiation capacity. The mechanism controlling asymmetric cell divisions is not understood in cnidarians or in any other animal group. PIWI proteins recently have been shown to be involved in maintaining the self-renewal capacity of stem cells in organisms as diverse as ciliates, flies, worms and mammals. Seipel et al.1 find that, in the cnidarian Podocoryne carnea, the Piwi homolog Cniwi is transcriptionally upregulated when the polyp generates buds, which will develop into medusae. Since transdifferentiation of striated muscle cells to smooth muscle cells also activated Cniwi expression, Cniwi appears to play a crucial role in differentiation events. The discovery should facilitate elucidation of the poorly understood factors that control asymmetric cell divisions at the beginning of animal evolution. BioEssays 26:929,931, 2004. © 2004 Wiley Periodicals, Inc. [source] |