Differential Tolerances (differential + tolerance)

Distribution by Scientific Domains


Selected Abstracts


Differential tolerance among cryptic species: A potential cause of pollutant-related reductions in genetic diversity

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2004
Axayácatl Rocha-Olivares
Abstract Differential mortality of cryptic species (i.e., morphologically similar but genetically distinct sibling species) may contribute to observed reductions in genetic diversity at contaminated sites if the members of a complex of cryptic species exhibit differential responses to the contaminants that are present. We conducted toxicity bioassays with both polynuclear aromatic hydrocarbon and metal contamination on Cletocamptus fourchensis and C. stimpsoni from two intensively sampled locations. Previous molecular and detailed morphological analyses segregated these as cryptic species from the cosmopolitan C. deitersi. We found that these species occur together at two field sites and that they exhibit unique toxic responses to heavy metals, suggesting differential tolerances at contaminated sites. These findings suggest that reported losses of genetic diversity at contaminated sites may represent a reduction in species diversity rather than a loss of the presumed less-tolerant genotypes within a species. They also suggest that members of a cryptic species complex should not be used in laboratory toxicity tests unless populations are genetically characterized. Future studies using genetic diversity as a marker of contaminant effects should consider the possibility of undetected cryptic species. [source]


Genome-wide gene expression profiling and a forward genetic screen show that differential expression of the sodium ion transporter Ena21 contributes to the differential tolerance of Candida albicans and Candida dubliniensis to osmotic stress

MOLECULAR MICROBIOLOGY, Issue 1 2009
Brice Enjalbert
Summary Candida albicans is more pathogenic than Candida dubliniensis. However, this disparity in virulence is surprising given the high level of sequence conservation and the wide range of phenotypic traits shared by these two species. Increased sensitivity to environmental stresses has been suggested to be a possible contributory factor to the lower virulence of C. dubliniensis. In this study, we investigated, in the first comparison of C. albicans and C. dubliniensis by transcriptional profiling, global gene expression in each species when grown under conditions in which the two species exhibit differential stress tolerance. The profiles revealed similar core responses to stresses in both species, but differences in the amplitude of the general transcriptional responses to thermal, salt and oxidative stress. Differences in the regulation of specific stress genes were observed between the two species. In particular, ENA21, encoding a sodium ion transporter, was strongly induced in C. albicans but not in C. dubliniensis. In addition, ENA21 was identified in a forward genetic screen for C. albicans genomic sequences that increase salt tolerance in C. dubliniensis. Introduction of a single copy of CaENA21 was subsequently shown to be sufficient to confer salt tolerance upon C. dubliniensis. [source]


Differential tolerance among cryptic species: A potential cause of pollutant-related reductions in genetic diversity

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2004
Axayácatl Rocha-Olivares
Abstract Differential mortality of cryptic species (i.e., morphologically similar but genetically distinct sibling species) may contribute to observed reductions in genetic diversity at contaminated sites if the members of a complex of cryptic species exhibit differential responses to the contaminants that are present. We conducted toxicity bioassays with both polynuclear aromatic hydrocarbon and metal contamination on Cletocamptus fourchensis and C. stimpsoni from two intensively sampled locations. Previous molecular and detailed morphological analyses segregated these as cryptic species from the cosmopolitan C. deitersi. We found that these species occur together at two field sites and that they exhibit unique toxic responses to heavy metals, suggesting differential tolerances at contaminated sites. These findings suggest that reported losses of genetic diversity at contaminated sites may represent a reduction in species diversity rather than a loss of the presumed less-tolerant genotypes within a species. They also suggest that members of a cryptic species complex should not be used in laboratory toxicity tests unless populations are genetically characterized. Future studies using genetic diversity as a marker of contaminant effects should consider the possibility of undetected cryptic species. [source]


Aspects of the larval biology of the sea anemones Anthopleura elegantissima and A. artemisia

INVERTEBRATE BIOLOGY, Issue 3 2002
Virginia M. Weis
Abstract. We investigated several aspects of the larval biology of the anemone Anthopleura elegantissima, which harbors algal symbionts from two different taxa, and the non-symbiotic A. artemisia. From a 7-year study, we report variable spawning and fertilization success of A. elegantissima in the laboratory. We examined the dynamics of symbiosis onset in larvae of A. elegantissima. Zoochlorellae, freshly isolated from an adult host, were taken up and retained during the larval feeding process, as has been described previously for zooxanthellae. In addition, larvae infected with zooxanthellae remained more highly infected in high-light conditions, compared to larvae with zoochlorellae, which remained more highly infected in low-light conditions. These results parallel the differential distribution of the algal types observed in adult anemones in the field and their differential tolerances to light and temperature. We report on numerous failed attempts to induce settlement and metamorphosis of larvae of A. elegantissima, using a variety of substrates and chemical inducers. We also describe a novel change in morphology of some older planulae, in which large bulges, resembling tentacles, develop around the mouth. Finally, we provide the first description of planulae of A. artemisia and report on attempts to infect this non-symbiotic species with zooxanthellae and zoochlorellae. [source]