Differential Targeting (differential + targeting)

Distribution by Scientific Domains


Selected Abstracts


Differential targeting of components of the dystrophin complex to the postsynaptic membrane

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2001
Sophie Marchand
Abstract Accumulating evidence points to the participation of dystroglycan in the clustering of nicotinic acetylcholine receptors at the neuromuscular junction [Côtéet al.. (1999) Nature Genet., 3, 338,342]. Dystroglycan is part of a multimolecular complex, either associated with dystrophin (the dystrophin-associated protein complex) at the sarcolemma or with utrophin (the utrophin-associated protein complex) at the neuromuscular junction. Understanding the assembly of this complex at the developing synapse led us to investigate, in Torpedo electrocyte, the intracellular routing and the targeting of several of its components, including dystroglycan, syntrophin, dystrophin and dystrobrevin. We previously demonstrated that acetylcholine receptors and rapsyn, the 43-kDa receptor-associated protein at the synapse, are cotargeted to the postsynaptic membrane via the exocytic pathway [Marchand et al.. (2000) J. Neurosci., 20, 521,528]. Using cell fractionation, immunopurification and immuno-electron microscope techniques, we show that ,-dystroglycan, an integral glycoprotein that constitutes the core of the dystrophin-associated protein complex localized at the innervated membrane, is transported together with acetylcholine receptor and rapsyn in post-Golgi vesicles en route to the postsynaptic membrane. Syntrophin, a peripheral cytoplasmic protein of the complex, associates initially with these exocytic vesicles. Conversely, dystrophin and dystrobrevin were absent from these post-Golgi vesicles and associate directly with the postsynaptic membrane. This study provides the first evidence for a separate targeting of the various components of the dystrophin-associated protein complex and a step-by-step assembly at the postsynaptic membrane. [source]


Differential targeting and functional specialization of sodium channels in cultured cerebellar granule cells

THE JOURNAL OF PHYSIOLOGY, Issue 3 2005
Nancy Osorio
The ion channel dynamics that underlie the complex firing patterns of cerebellar granule (CG) cells are still largely unknown. Here, we have characterized the subcellular localization and functional properties of Na+ channels that regulate the excitability of CG cells in culture. As evidenced by RT-PCR and immunocytochemical analysis, morphologically differentiated CG cells expressed Nav1.2 and Nav1.6, though both subunits appeared to be differentially regulated. Nav1.2 was localized at most axon initial segments (AIS) of CG cells from 8 days in vitro DIV 8 to DIV 15. At DIV 8, Nav1.6 was found uniformly throughout somata, dendrites and axons with occasional clustering in a subset of AIS. Accumulation of Nav1.6 at most AIS was evident by DIV 13,14, suggesting it is developmentally regulated at AIS. The specific contribution of these differentially distributed Na+ channels has been assessed using a combination of methods that allowed discrimination between functionally compartmentalized Na+ currents. In agreement with immunolocalization, we found that fast activating,fully inactivating Na+ currents predominate at the AIS membrane and in the somatic plasma membrane. [source]


Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae

THE PLANT JOURNAL, Issue 1 2005
Andreas Wachter
Summary The genome of Arabidopsis thaliana reveals that in this species the enzymes of glutathione biosynthesis, GSH1 and GSH2, are encoded by single genes. In silico analysis predicts proteins with putative plastidic transit peptides (TP) for both genes, but this has not been experimentally verified. Here we report a detailed analysis of the 5,ends of GSH1 and GSH2 mRNAs and demonstrate the subcellular targeting of the proteins encoded by different transcript types. GSH1 transcript analysis revealed two mRNA populations with short and long 5,-UTRs, respectively, both including the entire TP sequence. The ratio of long/total GSH1 transcripts was subject to developmental regulation. Transient transformation experiments with reporter gene fusions, bearing long or short 5,-UTRs, indicated an exclusive targeting of GSH1 to the plastids. Corroborating these results, endogenous and ectopically expressed GSH1 proteins were always present as a single polypeptide species with the size expected for correctly processed GSH1. Finally, the plastidic GSH1 localization was confirmed by immunocytochemistry. Similar to GSH1, multiple transcript populations were found for GSH2. However, here the prevalent shorter transcripts lacked a complete TP sequence. As expected, the large (but less abundant) transcript encoded a plastidic GSH2 protein, whereas GSH2 synthesized from the shorter transcript was targeted to the cytosol. The implications of the results for the compartmentation and regulation of GSH synthesis are discussed. [source]


Subcellular segregation of distinct heteromeric NMDA glutamate receptors in the striatum

JOURNAL OF NEUROCHEMISTRY, Issue 4 2003
Anthone W. Dunah
Abstract Functional N -methyl- d -aspartate (NMDA) glutamate receptors are composed of heteromeric complexes of NR1, the obligatory subunit for channel activity, and NR2 or NR3 family members, which confer variability in the properties of the receptors. Recent studies have provided evidence for the existence of both binary (containing NR1 and either NR2A or NR2B) and ternary (containing NR1, NR2A, and NR2B) receptor complexes in the adult mammalian brain. However, the mechanisms regulating subunit assembly and receptor localization are not well understood. In the CNS, NMDA subunits are present both at intracellular sites and the post-synaptic membrane of neurons. Using biochemical protein fractionation and co-immunoprecipitation approaches we have found that in rat striatum binary NMDA receptors are widely distributed, and can be identified in the light membrane, synaptosomal membrane, and synaptic vesicle-enriched subcellular compartments. In contrast, ternary receptors are found exclusively in the synaptosomal membranes. When striatal proteins are chemically cross-linked prior to subcellular fractionation, ternary NMDA receptors can be precipitated from the light membrane and synaptic vesicle-enriched fractions where this type of receptor complex is not detectable under normal conditions. These findings suggest differential targeting of distinct types of NMDA receptor assemblies between intracellular and post-synaptic sites based on subunit composition. This targeting may underlie important differences in the regulation of the transport pathways involved in both normal as well as pathological receptor functions. [source]


Incomplete penetrance and variable expressivity: is there a microRNA connection?

BIOESSAYS, Issue 9 2009
Jasmine K. Ahluwalia
Abstract Incomplete penetrance and variable expressivity are non-Mendelian phenomena resulting in the lack of correlation between genotype and phenotype. Not withstanding the diversity in mechanisms, differential expression of homologous alleles within cells manifests as variations in penetrance and expressivity of mutations between individuals of the same genotype. These phenomena are seen most often in dominantly inherited diseases, implying that they are sensitive to concentration of the gene product. In this framework and the advances in understanding the role of microRNA (miRNA) in fine-tuning gene expression at translational level, we propose miRNA-mediated regulation as a mechanism for incomplete penetrance and variable expressivity. The presence of miRNA binding sites at 3, UTR, co-expression of target gene,miRNA pairs for genes showing incomplete penetrance and variable expressivity derived from available data lend support to our hypothesis. Single nucleotide polymorphisms in the miRNA target site facilitate the implied differential targeting of the transcripts from homologous alleles. [source]