Differential Activity (differential + activity)

Distribution by Scientific Domains


Selected Abstracts


Differential activity in left inferior frontal gyrus for pseudowords and real words: An event-related fMRI study on auditory lexical decision

HUMAN BRAIN MAPPING, Issue 2 2005
Zhuangwei Xiao
Abstract After Newman and Twieg ([2001]: Hum Brain Mapp 14:39,47) and others, we used a fast event-related functional magnetic resonance imaging (fMRI) design and contrasted the lexical processing of pseudowords and real words. Participants carried out an auditory lexical decision task on a list of randomly intermixed real and pseudo Chinese two-character (or two-syllable) words. The pseudowords were constructed by recombining constituent characters of the real words to control for sublexical code properties. Processing of pseudowords and real words activated a highly comparable network of brain regions, including bilateral inferior frontal gyrus, superior, middle temporal gyrus, calcarine and lingual gyrus, and left supramarginal gyrus. Mirroring a behavioral lexical effect, left inferior frontal gyrus (IFG) was significantly more activated for pseudowords than for real words. This result disconfirms a popular view that this area plays a role in grapheme-to-phoneme conversion, as such a conversion process was unnecessary in our task with auditory stimulus presentation. An alternative view was supported that attributes increased activity in left IFG for pseudowords to general processes in decision making, specifically in making positive versus negative responses. Activation in left supramarginal gyrus was of a much larger volume for real words than for pseudowords, suggesting a role of this region in the representation of phonological or semantic information for two-character Chinese words at the lexical level. Hum Brain Mapp 25:212,221, 2005. © 2005 Wiley-Liss, Inc. [source]


Characterization of alanyl aminopeptidase from insecticide resistant and susceptible strains of Musca domestica L.

ENTOMOLOGICAL RESEARCH, Issue 3 2008
Sohail AHMED
Abstract To investigate the high activity of intracellular proteases in insecticide resistant strains of Musca domestica L., purification by anion-exchange chromatography and gel filtration of one of the enzymes, alanyl aminopeptidase (Ala AP), in three strains of Musca domestica was carried out. The fractions collected by gel filtration of soluble homogenates of the three strains (571ab, 17bb and Cooper) showed a single peak of Ala AP activity. Partially purified Ala AP of the three strains showed high activity at pH 7.5. The presence or absence of Ca2+ in the assay medium did not produce any difference in activity of Ala AP in the 571ab and Cooper strains, but there was a significant difference in the 17bb strain. The activity of Ala AP in all three strains was essentially unaltered in the presence of inhibitors of serine (PMSF), cysteine (E-64) proteases and carboxypeptidases (pepstatin). Ala AP hydrolyzed alanine amino methylcoumarin (Ala-AMC) maximally, followed by phenyl alanine amino methylcoumarin (Phe-AMC), leucyl amino methylcoumarin (Leu-AMC) and ornithine amino methylcoumarin (Orn-AMC). Ala AP from the three strains showed differential activity towards various substrates. The comparison of alanyl aminopeptidase's activity from different sources is discussed. [source]


Gene positional changes relative to the nuclear substructure during carbon tetrachloride-induced hepatic fibrosis in rats

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2004
Apolinar Maya-Mendoza
Abstract In the interphase nucleus the DNA of higher eukaryotes is organized in loops anchored to a substructure known as the nuclear matrix (NM). The topological relationship between gene sequences located in the DNA loops and the NM appears to be very important for nuclear physiology because processes such as replication, transcription, and processing of primary transcripts occur at macromolecular complexes located at discrete sites upon the NM. Mammalian hepatocytes rarely divide but preserve a proliferating capacity that is displayed in vivo after specific stimulus. We have previously shown that transient changes in the relative position of specific genes to the NM occur during the process of liver regeneration after partial ablation of the liver, but also that such changes correlate with the replicating status of the cells. Moreover, since chronic exposure to carbon tetrachloride (CCl4) leads to bouts of hepatocyte damage and regeneration, and eventually to non-reversible liver fibrosis in the rat, we used this animal model in order to explore if genes that show differential activity in the liver change or modify their relative position to the NM during the process of liver fibrosis induction. We found that changes in the relative position of specific genes to the NM occur during the chronic administration of CCl4, but also that such changes correlate with the proliferating status of the hepatocytes that goes from quiescence to regeneration to replicative senescence along the course of CCl4 -induced liver fibrosis, indicating that specific configurations in the higher-order DNA structure underlie the stages of progression towards liver fibrosis. © 2004 Wiley-Liss, Inc. [source]


Short-Days Induce Weight Loss in Siberian Hamsters Despite Overexpression of the Agouti-Related Peptide Gene

JOURNAL OF NEUROENDOCRINOLOGY, Issue 6 2010
P. H. Jethwa
Many vertebrates express profound annual cycles of body fattening, although it is not clear whether these represent differential activity of the central pathways known to mediate homeostatic control of food intake and energy expenditure, or whether the recent discovery of a major role for pars tuberalis-ependymal signalling points towards novel mechanisms. We examined this in the Siberian hamster (Phodopus sungorus) by using gene transfection to up-regulate a major orexigenic peptide, agouti-related peptide (AgRP), and then determined whether this increased anabolic drive could prevent the short-day induced winter catabolic state. Infusions of a recombinant adeno-associated virus encoding an AgRP construct into the hypothalamus of hamsters in the long-day obese phase of their seasonal cycle produced a 20% gain in body weight over 6 weeks compared to hamsters receiving a control reporter construct, reflecting a significant increase in food intake and a significant decrease in energy expenditure. However, all hamsters showed a significant, prolonged decrease in body weight when exposed to short photoperiods, despite the hamsters expressing the AgRP construct maintaining a higher food intake and lower energy expenditure relative to the control hamsters. Visualisation of the green fluorescent protein reporter and analysis of AgRP-immunoreactivity confirmed widespread expression of the construct in the hypothalamus, which was maintained for the 21-week duration of the study. In conclusion, the over-expression of AgRP in the hypothalamus produced a profoundly obese state but did not block the seasonal catabolic response, suggesting a separation of rheostatic mechanisms in seasonality from those maintaining homeostasis of energy metabolism. [source]


Allele C-specific methylation of the 5-HT2A receptor gene: Evidence for correlation with its expression and expression of DNA methylase DNMT1

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 3 2006
Oxana O. Polesskaya
Abstract Differential DNA methylation has been suggested to contribute to differential activity of alleles C and T and thereby to genetic associations between the C/T(102) polymorphism in the 5-HT2A receptor gene (5HT2AR) and psychiatric disorders. We surveyed methylation in two CpG sites, which are specific to allele C. The majority of allele C-specific CpG sites were methylated in human temporal cortex and peripheral leukocytes and levels of methylation varied between individuals. Levels of methylation in the promoter correlated significantly with the expression of 5HT2AR. Methylation of allele C-specific CpG sites in the first exon correlated significantly with the expression of DNA methylase 1 (DNMT1) but not S-adenosylhomocysteine hydrolase (AHCY). These findings support the hypothesis that allele-specific DNA methylation is involved in regulation of 5HT2AR expression, influencing expression differences between alleles C and T. © 2005 Wiley-Liss, Inc. [source]


Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis

MOLECULAR MICROBIOLOGY, Issue 3 2000
Min Jiang
Protein homology studies identified five kinases potentially capable of phosphorylating the Spo0F response regulator and initiating sporulation in Bacillus subtilis. Two of these kinases, KinA and KinB, were known from previous studies to be responsible for sporulation in laboratory media. In vivo studies of the activity of four of the kinases, KinA, KinC, KinD (ykvD) and KinE (ykrQ), using abrB transcription as an indicator of Spo0A,P level, revealed that KinC and KinD were responsible for Spo0A,P production during the exponential phase of growth in the absence of KinA and KinB. In vitro, all four kinases dephosphorylated Spo0F,P with the production of ATP at approximately the same rate, indicating that they possess approximately equal affinity for Spo0F. All the kinases were expressed during growth and early stationary phase, suggesting that the differential activity observed in growth and sporulation results from differential activation by signal ligands unique to each kinase. [source]


Differential regulation of the Oct-3/4 gene in cell culture model systems that parallel different stages of mammalian development

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 8 2008
Sunil Kumar Mallanna
Abstract Oct-3/4 is an essential transcription factor that regulates stem cell fate during embryogenesis. Previous reports have shown that the Oct-3/4 gene utilizes different enhancers to regulate its expression as development proceeds. However, the cis -elements contributing to the differential activity of these enhancers require further study. Here, we investigated the function of the HMG/POU cassette and LRH-1 site present in the distal enhancer (DE) and the proximal enhancer, respectively. F9 and P19 EC cells were the focus of this study because their differential utilization of Oct-3/4 enhancers parallels the use of these enhancers during different stages of development. We determined that the LRH-1 site functions as a positive and a negative cis -regulatory element in P19 and F9 EC cells, respectively. Furthermore, we determined that the HMG/POU cassette in the DE strongly activates the Oct-3/4 promoter in F9 cells, but is a much weaker positive regulatory element in P19 cells. Given that HMG/POU cassettes play key roles in the regulation of at least seven essential genes, the Oct-3/4 HMG/POU cassette was examined more closely by focusing on Sox2, which can bind to HMG/POU cassettes. Although chromatin immunoprecipitation demonstrated that Sox2 binds to the Oct-3/4 gene equally well in both EC cell lines, tethering Sox2 to the region of the HMG/POU cassette only activated the Oct-3/4 promoter in F9 EC cells. These and other findings suggest that the differential activity of the HMG/POU cassette of the Oct-3/4 gene in EC cells is due to differential action of Sox2 and its associated co-factors. Mol. Reprod. Dev. 75: 1247,1257, 2008. © 2008 Wiley-Liss, Inc. [source]


Distal enhancer of the mouse FGF-4 gene and its human counterpart exhibit differential activity: Critical role of a GT box

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 3 2005
Brian Boer
Abstract Previous studies have shown that there is a strict requirement for fibroblast growth factor-4 (FGF-4) during mammalian embryogenesis, and that FGF-4 expression in embryonic stem (ES) cells and embryonal carcinoma (EC) cells are controlled by a powerful downstream distal enhancer. More recently, mouse ES cells were shown to express significantly more FGF-4 mRNA than human ES cells. In the work reported here, we demonstrate that mouse EC cells also express far more FGF-4 mRNA than human EC cells. Using a panel of FGF-4 promoter/reporter gene constructs, we demonstrate that the enhancer of the mouse FGF-4 gene is approximately tenfold more active than its human counterpart. Moreover, we demonstrate that the critical difference between the mouse and the human FGF-4 enhancer is a 4 bp difference in the sequence of an essential GT box. Importantly, we demonstrate that changing 4 bp in the human enhancer to match the sequence of the mouse GT box elevates the activity of the human FGF-4 enhancer to the same level as that of the mouse enhancer. We extended these studies by examining the roles of Sp1 and Sp3 in FGF-4 expression. Although we demonstrate that Sp3, but not Sp1, can activate the FGF-4 promoter when artificially tethered to the FGF-4 enhancer, we show that Sp3 is not essential for expression of FGF-4 mRNA in mouse ES cells. Finally, our studies with human EC cells suggest that the factor responsible for mediating the effect of the mouse GT box is unlikely to be Sp1 or Sp3, and this factor is either not expressed in human EC cells or it is not sufficiently active in these cells. Mol. Reprod. Dev. © 2005 Wiley-Liss, Inc. [source]