Home About us Contact | |||
Different Coatings (different + coating)
Selected AbstractsChanges in Volatile Components of Stored Tangerines and Other Specialty Citrus Fruits with Different CoatingsJOURNAL OF FOOD SCIENCE, Issue 5 2002R.D. Hagenmaier ABSTRACT: Shellac and wax-based citrus coatings were applied to Fallglo, Robinson, Sunburst, Dancy and Murcott tangerines, Nova and Orlando tangelos, and Temple oranges. Flavor volatiles were measured before and after storage. Concentrations of ethyl acetate, ethyl butyrate, isopentanol and 2-methyl-3-buten-2-ol increased markedly for fruit with shellac-based coatings, and were highly correlated with ethanol content, but at different ratios for the different varieties. The concentration increases were relatively less for fruit coated with the wax-based coatings, and suggest that high-gloss shellac and resin-based coatings are not appropriate for tangerines. [source] Microstructure Characterization of Tool Steel Claddings Co-Extruded on Low Alloyed Steel Substrates,ADVANCED ENGINEERING MATERIALS, Issue 5 2009Pedro Augusto da Souza e Silva Low-alloyed steel bars are hot extruded with pre-sintered tool-steel powders with or without the addition of tungsten carbides (W2C/WC) as hard particles. An extrudate is formed consisting of a wear resistant coating layer and a bulk steel bar as the substrate core. The microstructure at the interface between coating and substrate of different coatings is characterized using OM, SEM and EBSD. [source] Novel polyurethane elastomer continuous carbon fiber composites: Preparation and characterizationJOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2007Borda Abstract Preparation and characterization of novel polyurethane (PUR),carbon fiber (CF) composites are reported. The reinforcement of PUR elastomers was achieved using unidirectional continuous CFs with different coatings (uncoated and epoxy and polyester resin coatings) by applying molding for the preparation of PUR-CF composites. Considerable reinforcement of PUR was attained even at relatively low CF content, e.g., maximum stress and Young's modulus of PUR-CF composite at CF content 3% (m/m) were found to be 3,5 and 4,10 times higher than those of the PUR-matrix, respectively. In addition, a linear relationship between the Young's modulus and the CF content was found as well as linear variation of maximum stress with the CF content was also observed. The adhesion of CF to the PUR-matrix was strong in each case as concluded from the strain,stress and the scanning electron microscopy (SEM) investigations. However, the extent of reinforcement of PUR at a given CF content was found to depend greatly on the coatings of CF, and increased in the following order: epoxy resin < polyester resin < uncoated. The effect of the coating of CF on the reinforcement of PUR is also discussed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 287,292, 2007 [source] Microstructure,Property Correlations in Industrial Thermal Barrier CoatingsJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 7 2004Anand A. Kulkarni This paper describes the results from multidisciplinary characterization/scattering techniques used for the quantitative characterization of industrial thermal barrier coating (TBC) systems used in advanced gas turbines. While past requirements for TBCs primarily addressed the function of insulation/life extension of the metallic components, new demands necessitate a requirement for spallation resistance/strain tolerance, i.e., prime reliance, on the part of the TBC. In an extensive effort to incorporate these TBCs, a design-of-experiment approach was undertaken to develop tailored coating properties by processing under varied conditions. Efforts focusing on achieving durable/high-performance coatings led to dense vertically cracked (DVC) TBCs, exhibiting quasi-columnar microstructures approximating electron-beam physical-vapor-deposited (EB-PVD) coatings. Quantitative representation of the microstructural features in these vastly different coatings is obtained, in terms of porosity, opening dimensions, orientation, morphologies, and pore size distribution, by means of small-angle neutron scattering (SANS) and ultra-small-angle X-ray scattering (USAXS) studies. Such comprehensive characterization, coupled with elastic modulus and thermal conductivity measurements of the coatings, help establish relationships between microstructure and properties in a systematic manner. [source] Tribological characterisation of hard coatings with and without DLC top layer in fretting testsLUBRICATION SCIENCE, Issue 1 2006D. KlaffkeArticle first published online: 14 DEC 200 Abstract The potential of coatings to protect components against wear and to reduce friction has led to a large variety of protective coatings. In order to check the success of coating modifications and to find solutions for different purposes, initial tests with laboratory tribometers are usually done to give information about the performance of a coating. Different Ti-based coatings (TiN, Ti(C,N), and TiAlN) and NiP were tested in comparison to coatings with an additional diamond-like carbon (DLC) top coating. Tests were done in laboratory air at room temperature with oscillating sliding (gross slip fretting) with a ball-on-disc arrangement against a ceramic ball (Al2O3). Special attention was paid to possible effects of moisture (relative humidity). The coefficient of friction was measured on line, and the volumetric wear at the disc was determined after the test from microscopic measurements of the wear scar and additional profiles. The friction and wear behaviour is quite different for the different coatings and depends more or less on the relative humidity. The DLC coating on top of the other coatings reduces friction and wear considerably. In normal and in moist air the coefficient of wear of the DLC top-layer coating is significantly less than 10,6,mm3/Nm and the coefficient of friction is below 0.1. In dry air, however, there is a certain tendency to high wear and high friction. Copyright © 2006 John Wiley & Sons, Ltd. [source] Hydrocolloid Coating of Xenopus laevis EmbryosBIOTECHNOLOGY PROGRESS, Issue 3 2000N. Kampf A novel technology for coating single cells and embryos with thin hydrocolloid (water-soluble polymer) films has been invented and patented. Coating is different from entrapment and immobilization in that the coating around the cell is thinner, comprising only a small fraction of the cell or embryo's diameter. Xenopus laevis embryos were coated with thin films of low-methoxy pectin (LMP), alginate, and ,- and ,-carrageenans. These gums have different compositions and structures and as such created different coatings around the fertilized cells. All coated embryos appeared to develop normally, similar to noncoated embryos. Elemental detection by ICP-AES spectroscopy revealed that the embryo can control the diffusion of excess ions to which it is exposed during the coating process. The coatings delayed hatching by 18,24 h. Consequently, at hatch the embryos were at a more developed stage than their noncoated counterparts. The hydrocolloid coating reduced the thickness of the natural jelly coating (JC). With the ,-carrageenan coating, percent hatch was maximal, while with LMP it was minimal, as a result of the films' mechanical properties and thicknesses. LMP and alginate created smoother coatings than the carrageenans. Potential interactions between the coating and the natural JC are hypothesized. Overall, coatings appear to be a suitable tool for laboratories interested in performing longer-term experiments with embryos. [source] |