Different Cancer Cell Lines (different + cancer_cell_line)

Distribution by Scientific Domains


Selected Abstracts


The effect of nitric oxide on cyclooxygenase-2 (COX-2) overexpression in head and neck cancer cell lines

INTERNATIONAL JOURNAL OF CANCER, Issue 5 2003
Seok-Woo Park
Abstract The overexpression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) has been previously reported in head and neck squamous cell carcinoma (HNSCC), as well as in many cancers. We hypothesized that endogenous nitric oxide (NO) might increase the expression of COX-2 in cancer cells. Therefore, we investigated the cross-talk between NO and the prostaglandin (PG) pathways in HNSCC cell lines. We found that COX-2 and iNOS expressions were elevated simultaneously. On adding the NO donor, SNAP, the PGE2 level was increased 2,20 times due to increased COX-2 expression. This increase of COX-2 expression by SNAP or PMA (potent inducer of both iNOS and COX-2) was blocked to various degrees by NO scavengers and NOS inhibitors (L-NAME and 1400W). Also, the expression of COX-2 in resting cells was inhibited by NOS inhibitors. Moreover, COX-2 expression, induced by SNAP, was inhibited by ODQ, a soluble guanylate cyclase (sGC) inhibitor. The effect of dibutyryl-cGMP on COX-2 expression was similar to that of SNAP. These results imply that endogenous or exogenous NO activates sGC and that the resulting increase of cGMP induces a signaling that upregulates the expression of COX-2 in HNSCC cell lines. We also observed that NO increased COX-2 expression in different cancer cell lines, including cervic and gastric cancer cell lines. These findings further support the notion that NO can be associated with carcinogenesis through the upregulation of COX-2, and that NOS inhibitor may be also useful for cancer prevention. © 2003 Wiley-Liss, Inc. [source]


Coumarin A/AA induces apoptosis-like cell death in HeLa cells mediated by the release of apoptosis-inducing factor

JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 4 2009
Carolina Álvarez-Delgado
Abstract It has been demonstrated that naturally occurring coumarins have strong biological activity against many cancer cell lines. In this study, we assessed the cytotoxicity induced by the naturally isolated coumarin A/AA in different cancer cell lines (HeLa, Calo, SW480, and SW620) and in normal peripheral-blood mononuclear cells (PBMCs). Cytotoxicity was evaluated using the MTT assay. The results demonstrate that coumarin A/AA was cytotoxic in the four cancer cell lines tested and importantly was significantly less toxic in PBMCs isolated from healthy donors. The most sensitive cancer cell line to coumarin A/AA treatment was Hela. Thus, the programmed cell death (PCD) mechanism induced by this coumarin was further studied in this cell line. DNA fragmentation, histomorphology, cell cycle phases, and subcellular distribution of PCD proteins were assessed. The results demonstrated that DNA fragmentation, but not significant cell cycle disruptions, was part of the PCD activated by coumarin A/AA. Interestingly, it was found that apoptosis-inducing factor (AIF), a proapoptotic protein of the mitochondrial intermembrane space, was released to the cytoplasm in treated cells as detected by the western blot analysis in subcellular fractions. Nevertheless, the active form of caspase-3 was not detected. The overall results indicate that coumarin A/AA induces a caspase-independent apoptotic-like cell death program in HeLa cells, mediated by the early release of AIF and suggest that this compound may be helpful in clinical oncology. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:263,272, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20288 [source]


Mirk/Dyrk1B in cancer

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2007
Eileen Friedman
Abstract Mirk/Dyrk1B is a member of a conserved family of serine/threonine kinases which are activated by intramolecular tyrosine phosphorylation, and which mediate differentiation in different tissues,Mirk in skeletal muscle, Dyrk1A in the brain, etc. One role of Mirk in skeletal muscle differentiation is to block cycling myoblasts in the G0 quiescent state by modification of cell cycle regulators, while another role of Mirk is to limit apoptosis in fusing myoblasts. Amplification of the Mirk gene, upregulation of Mirk expression and/or constitutive activation of this kinase have been observed in several different types of cancer. If coupled with a stress condition such as serum starvation which induces a quiescent state, depletion of Mirk by RNA interference using either synthetic duplex RNAi's or pSilencer-encoded RNAi's have decreased colony formation of different cancer cell lines and enhanced apoptosis induced by chemotherapeutic drugs. Mirk is activated by phosphorylation by the stress-activated SAPK kinases MKK3 and MKK6. Our working hypothesis is that Mirk is activated by this pathway in response to various stresses, and then acts as a checkpoint kinase to arrest damaged tumor cells in a quiescent state and allow cellular repair. Pharmacological inhibition of Mirk may enhance the anti-tumor effect of chemotherapeutic drugs. J. Cell. Biochem. 102: 274,279, 2007. © 2007 Wiley-Liss, Inc. [source]


Structure, DNA Binding Studies and Cytotoxicity of Complex [Pd(phen)(L -asp)]·3H2O

CHINESE JOURNAL OF CHEMISTRY, Issue 6 2009
Enjun GAO
Abstract The palladium(II) complex of [Pd(phen)(L -asp)]·3H2O (phen=1,10-phenanthroline, H2L-asp=L -aspartic acid) has been synthesized from a solution reaction and analyzed by elemental analyses, 1H NMR and IR spectra. Moreover, the complex has been structurally characterized by single-crystal X-ray diffractometry. The cytotoxicity assay of the complex and cis -DDP as reference substance against three different cancer cell lines (Hela, Hep-G2 and KB) has been conducted. The results show that the Pd complex exhibits higher cytotoxicity against Hela system. The study on the interaction of the Pd complex with fish sperm DNA (FS-DNA) has been performed with diverse spectroscopic techniques, showing that the complex is bound to the fish sperm DNA via an intercalative mode. Gel electrophoresis assay demonstrates the ability of the complex to cleave the pBR 322 plasmid DNA. [source]