Home About us Contact | |||
Different Analytical Methods (different + analytical_methods)
Selected AbstractsOnion Cells After High Pressure and Thermal Processing: Comparison of Membrane Integrity Changes Using Different Analytical Methods and Impact on Tissue TextureJOURNAL OF FOOD SCIENCE, Issue 7 2010Maria E. Gonzalez Abstract:, Two different analytical methods were evaluated for their capacity to provide quantitative information on onion cell membrane permeability and integrity after high pressure and thermal processing and to study the impact of these processing treatments on cell compartmentalization and texture quality. To determine changes in cell membrane permeability and/or integrity the methodologies utilized were: (1) measurement of a biochemical product, pyruvate, formed as a result of membrane permeabilization followed by enzymatic activity and (2) leakage of electrolytes into solution. These results were compared to previously determined methods that quantified cell viability and 1H-NMR T2 of onions. These methods allowed for the monitoring of changes in the plasma and tonoplast membranes after high pressure or thermal processing. High pressure treatments consisted of 5 min holding times at 50, 100, 200, 300, or 600 MPa. Thermal treatments consisted of 30 min water bath exposure to 40, 50, 60, 70, or 90 °C. There was strong agreement between the methods in the determination of the ranges of high pressure and temperature that induce changes in the integrity of the plasma and tonoplast membranes. Membrane rupture could clearly be identified at 300 MPa and above in high pressure treatments and at 60 °C and above in the thermal treatments. Membrane destabilization effects could already be visualized following the 200 MPa and 50 °C treatments. The texture of onions was influenced by the state of the membranes and was abruptly modified once membrane integrity was lost. Practical Application:, In this study, we used chemical, biochemical, and histological techniques to obtain information on cell membrane permeability and onion tissue integrity after high pressure and thermal processing. Because there was strong agreement between the various methods used, it is possible to implement something relatively simple, such as ion leakage, into routine quality assurance measurements to determine the severity of preservation methods and the shelf life of processed vegetables. [source] Temperature-Dependent Solid-State Reactions With and Without Kirkendall Effect in Al2O3/ZnO, Fe2O3/ZnO, and CoXOY/ZnO Oxide Thin Film Systems,ADVANCED ENGINEERING MATERIALS, Issue 6 2010Andriy Zolotaryov Temperature-dependent solid-state reactions and the occurrence of the Kirkendall effect are studied in thin film oxide systems applying optical reflection microscopy, X-ray reflectivity, (scanning) transmission electron microscopy, grazing-incidence X-ray diffraction measurements, and SQUID magnetometry. The efficiency of the simultaneous application of different analytical methods for the precise selection and investigation of the most interesting samples is demonstrated first on the example of the Al2O3/ZnO system, for which the spinel formation after a solid-state reaction and the formation of Kirkendall voids were already reported. The demonstrated methodology is then applied to study Fe2O3/ZnO and CoXOY/ZnO film pairs. The investigations clearly demonstrate the temperature-driven formation of a ferromagnetic spinel by a solid state reaction involving the Kirkendall effect in the Fe2O3/ZnO system, already after an annealing at 600,°C for 1,h. We also report on the solid state reaction in the CoXOY/ZnO system after annealing at 700,°C for 1,h, however without the Kirkendall effect and without any evidence of ferromagnetism of the final state. [source] Comparison of Cyclodextrin-Dipeptide Inclusion Complexes in the Absence and Presence of Urea by Means of Capillary Electrophoresis, Nuclear Magnetic Resonance and Molecular ModelingEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 18 2007Benjamin Waibel Abstract The use of capillary electrophoresis (CE) modified with cyclodextrin (CD) for the separation of stereoisomers of peptides is well established. To increase the solubility of ,-CD, urea is often added to the buffer which may influence the complexation of a CD with a guest molecule. The aim of the present study was to investigate the influence of urea on the complexation between dipeptides and ,-CD using Ala-Phe and Ala-Tyr as model compounds. For this purpose three different analytical methods were employed: capillary electrophoresis (CE), 1H-NMR spectroscopy and molecular dynamics simulations (MD). Electropherograms of the peptide enantiomers were different in the presence and absence of urea. For example, at pH,2.5 in the absence of urea the enantiomers of Ala-Tyr are not separated in contrast to the use of buffers containing urea. Applying "complexation-induced chemical shift (CICS)" in NMR spectroscopy and rotating frame Overhauser enhancement spectroscopy (ROESY) revealed differences in the complexation of the peptide enantiomers by ,-CD in the absence and presence of urea suggesting the stabilization of the complex through the phenolic hydroxyl group of tyrosine. MD simulations for different complexes were carried out with consideration of both water and urea molecules in solution. Simulations were performed for 1 ns. In conclusion, NMR spectroscopy and MD methods help to understand the structure of peptide-CD complexes and the separation and migration behavior in CE. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source] The determination of aflatoxins in spices by immunoaffinity column extraction using HPLCINTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 9 2005Cavit Bircan Summary Seventy-five samples of different spices marketed in Turkey were purchased from bazaars, herbal shops and supermarkets. Equal amounts of paprika, chilli, black peppers and cumin were purchased and used to test and compare the amount of aflatoxin contamination. Two different analytical methods were examined for their efficacy by adding a known amount of aflatoxin to the blank samples of paprika. Twenty-seven paprika, all the chilli powder and four ground black pepper samples were contaminated with aflatoxin B1 in the range of 0.5,116.4, 1.6,80.4 and 0.3,1.2 ,g kg,1 respectively. Twenty-three (30%) paprika and chilli powder samples were above the regulatory limits used in the European Union. No aflatoxin contamination was detected in the cumin samples at a detection limit of 0.2 ,g kg,1. [source] Onion Cells After High Pressure and Thermal Processing: Comparison of Membrane Integrity Changes Using Different Analytical Methods and Impact on Tissue TextureJOURNAL OF FOOD SCIENCE, Issue 7 2010Maria E. Gonzalez Abstract:, Two different analytical methods were evaluated for their capacity to provide quantitative information on onion cell membrane permeability and integrity after high pressure and thermal processing and to study the impact of these processing treatments on cell compartmentalization and texture quality. To determine changes in cell membrane permeability and/or integrity the methodologies utilized were: (1) measurement of a biochemical product, pyruvate, formed as a result of membrane permeabilization followed by enzymatic activity and (2) leakage of electrolytes into solution. These results were compared to previously determined methods that quantified cell viability and 1H-NMR T2 of onions. These methods allowed for the monitoring of changes in the plasma and tonoplast membranes after high pressure or thermal processing. High pressure treatments consisted of 5 min holding times at 50, 100, 200, 300, or 600 MPa. Thermal treatments consisted of 30 min water bath exposure to 40, 50, 60, 70, or 90 °C. There was strong agreement between the methods in the determination of the ranges of high pressure and temperature that induce changes in the integrity of the plasma and tonoplast membranes. Membrane rupture could clearly be identified at 300 MPa and above in high pressure treatments and at 60 °C and above in the thermal treatments. Membrane destabilization effects could already be visualized following the 200 MPa and 50 °C treatments. The texture of onions was influenced by the state of the membranes and was abruptly modified once membrane integrity was lost. Practical Application:, In this study, we used chemical, biochemical, and histological techniques to obtain information on cell membrane permeability and onion tissue integrity after high pressure and thermal processing. Because there was strong agreement between the various methods used, it is possible to implement something relatively simple, such as ion leakage, into routine quality assurance measurements to determine the severity of preservation methods and the shelf life of processed vegetables. [source] Equilibrium studies of protein aggregates and homogeneous nucleation in protein formulationJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 2 2010Sylvia Kiese Abstract Shaking or heat stress may induce protein aggregates. Aggregation behavior of an IgG1 stressed by shaking or heat following static storage at 5 and 25°C was investigated to determine whether protein aggregates exist in equilibrium. Aggregates were detected using different analytical methods including visual inspection, turbidity, light obscuration, size exclusion chromatography, and dynamic light scattering. Significant differences were evident between shaken and heated samples upon storage. Visible and subvisible particles (insoluble aggregates), turbidity and z -average diameter decreased whilst soluble aggregate content increased in shaken samples over time. Insoluble aggregates were considered to be reversible and dissociate into soluble aggregates and both aggregate types existed in equilibrium. Heat-induced aggregates had a denatured protein structure and upon static storage, no significant change in insoluble aggregates content was shown, whilst changes in soluble aggregates content occurred. This suggested that heat-induced insoluble aggregates were irreversible and not in equilibrium with soluble aggregates. Additionally, the aggregation behavior of unstressed IgG1 after spiking with heavily aggregated material (shaken or heat stressed) was studied. The aggregation behavior was not significantly altered, independent of the spiking concentration over time. Thus, neither mechanically stressed native nor temperature-induced denatured aggregates were involved in nucleating or propagating aggregation. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:632,644, 2010 [source] Comparison between analytical methods and biological assays for the assessment of tannin-related antinutritive effects in some Spanish browse speciesJOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 11 2004Hajer Ammar Abstract Twenty-two samples of leaves and flowers of six Mediterranean browse species (Erica australis, Quercus pyrenaica, Cistus laurifolius, Cytisus scoparius, Genista florida and Rosa canina) were analysed for total extractable phenols (TP), extractable tannins (ET) and condensed tannins (CTb (butanol/HCl assay) and CTv (vanillin assay)). The biological activity of the phenolic compounds was assessed as the increases in in vitro dry matter digestibility and gas production after in vitro incubation in rumen fluid following the addition of polyethylene glycol 6000 (PEG). The concentrations of phenolics and tannins varied with species, sampling time and part of the plant (leaves or flowers). There were also large differences in the values determined by different analytical methods. The highest correlation coefficients (P < 0.001) were found between TP and ET (r = 0.973) and between CTb and CTv (r = 0.758). However, only low correlations were observed between TP and CTb or CTv. Positive and significant (P < 0.01) correlations were observed between tannins and their biological activity determined as the effect of PEG on gas production. It is concluded that, although further research is required to develop methods for the accurate quantification of biologically active tannins, the effect of PEG on in vitro gas production seems to have promising potential for the assessment of phenolic-related antinutritive effects in browse plants. This technique, coupled with other tannin assays, could provide a better understanding of the nutritional and physiological significance of tannins. Copyright © 2004 Society of Chemical Industry [source] Gas Phase Modification of Superhard Carbon Coatings Deposited by Pulsed DC-Arc-ProcessPLASMA PROCESSES AND POLYMERS, Issue S1 2009Werner Grimm Abstract The pulsed vacuum arc discharge (pulsed arc) is the most efficient PVD technology for deposition of hard amorphous carbon coatings on tools and machinery parts. Due to the pulsed arc discharge a stable evaporation process and the efficient deposition of hydrogen-free a-C type coatings is possible. This paper shows that the pulsed arc enables the deposition of ta-C and modified a-C coatings with interesting coating properties in a wide pressure range of argon, acetylene and ammonia gas atmosphere. Coatings with different gas flow rates of these gases were deposited on steel substrates. The coating properties were characterized by using different analytical methods for determination of structure, hardness, friction and wear behaviour. The changes of film properties in dependence of the kind and the rate of gas flow are compared and discussed. [source] Limitations of mass spectrometric methods for the characterization of polydisperse materials,RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 17 2010Alan A. Herod This paper is a review of work on the characterization of coal liquids and petroleum residues and asphaltenes over several decades in which various mass spectrometric methods have been investigated. The limitations of mass spectrometric methods require exploration in order to understand what the different analytical methods can reveal about environmental pollution by these kinds of samples and, perhaps more importantly, what they cannot reveal. The application of mass spectrometry to environmental problems generally requires the detection and determination of the concentration of specific pollutants released into the environment by accident or design. The release of crude petroleum or coal liquids into the environment can be detected and tracked during biodegradation processes through specific chemicals such as alkanes or polyaromatic hydrocarbons (PAHs). However, petroleum asphaltenes are polydisperse materials of unknown mass range and chemical structures and, therefore, there are no individual chemicals to detect. It is necessary to determine methods of detection and the ranges of mass of such materials. This can only be achieved through fractionation to reduce the polydispersity of the initial sample. Comparison of mass spectrometric results with results from an independent analytical method such as size-exclusion chromatography with a suitable eluent is advisable to confirm that all the sample has been detected and mass discrimination effects avoided. Copyright © 2010 John Wiley & Sons, Ltd. [source] Comparison of analytical approaches for liquid chromatography/mass spectrometry determination of the alcohol biomarker ethyl glucuronide in urineRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 12 2010Anders Helander Official guidelines originating from a European Union directive regulate requirements for analytical methods used to identify chemical compounds in biological matrices. This study compared different liquid chromatography/electropray ionization mass spectrometry (LC/ESI-MS) and tandem mass spectrometry (LC/ESI-MS/MS) procedures for accurate determination of the conjugated ethanol metabolite and alcohol biomarker ethyl glucuronide (EtG) in urine, and the value of combined EtG and ethyl sulfate (EtS) measurement. Analysis was carried out on 482 urines following solid-phase extraction (SPE) sample cleanup or using direct injection of a diluted sample. SPE combined with LC/MS/MS was demonstrated to be the most selective and sensitive method and was chosen as reference method. The EtG results by different methods showed good correlation (r,=,0.96,0.98). When comparing five reporting limits for EtG in the range 0.10,1.00,mg/L, the overall agreement with the reference method (frequency of true positives plus true negatives) was 82,97% for direct-injection LC/MS/MS, 90,97% for SPE-LC/MS, 86,98% for direct-injection LC/MS, and 86,98% for direct-injection LC/MS analysis of EtG and EtS. Most deviations were attributable to uncertainty in quantitation, when the value was close to a cutoff but the respective results were slightly above and below, or vice versa, the critical limit. However, for direct-injection LC/MS/MS, despite earning 4 identification points, equally many negative results were due to a product ion ratio outside the ±20% deviation accepted by the guidelines. These results indicate that the likelihood of different analytical methods to provide reliable analytical results depends on the reporting limit applied. Copyright © 2010 John Wiley & Sons, Ltd. [source] |