Different Analytical Approaches (different + analytical_approach)

Distribution by Scientific Domains


Selected Abstracts


Cardiac hypertrophy and failure: lessons learned from genetically engineered mice

ACTA PHYSIOLOGICA, Issue 1 2001
Y. Takeishi
Congestive heart failure is a major and growing public health problem. Because of improved survival of myocardial infarction patients produced by thrombolytic therapy or per-cutaneous revascularization it represents the only form of cardiovascular disease with significantly increased incidence and prevalence. Clinicians view this clinical syndrome as the final common pathway of diverse pathologies such as myocardial infarction and haemodynamic overload. Insights into mechanisms for heart failure historically derived from physiological and biochemical studies which identified compensatory adaptations for the haemodynamic burden associated with the pathological condition including utilization of the Frank Starling mechanism, augmentation of muscle mass, and neurohormonal activation to increase contractility. Therapy has largely been phenomenological and designed to prevent or limit the deleterious effects of these compensatory processes. More recently insights from molecular and cell biology have contributed to a more mechanistic understanding of potential causes of cardiac hypertrophy and failure. Many different analytical approaches have been employed for this purpose. These include the use of conventional animal models which permit serial observation of the onset and progression of heart failure and a sequential analysis of underlying biochemical and molecular events. Neonatal murine cardiomyocytes have been a powerful tool to examine in vitro subcellular mechanisms devoid of the confounding functional effects of multicellular preparations and heterogeneity of cell type. Finally, significant progress has been made by utilizing tissue from human cardiomyopathic hearts explanted at the time of orthotopic transplantation. Each of these methods has significant advantages and disadvantages. Arguably the greatest advance in our understanding of cardiac hypertrophy and failure over the past decade has been the exploitation of genetically engineered mice as biological reagents to study in vivo the effects of alterations in the murine genome. The power of this approach, in principle, derives from the ability to precisely overexpress or ablate a gene of interest and examine the phenotypic consequences in a cardiac specific post-natal manner. In contrast to conventional animal models of human disease which employ some form of environmental stress, genetic engineering involves a signal known molecular perturbation which produces the phenotype. [source]


Direct exposure electron ionization mass spectrometry and gas chromatography/mass spectrometry techniques to study organic coatings on archaeological amphorae

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 5 2005
Maria Perla Colombini
Abstract Two different analytical approaches, direct exposure electron ionization mass spectrometry (DE-MS) and gas chromatography/mass spectrometry (GC/MS), were compared in a study of archaeological resinous materials. DE-MS was found to be an efficient fingerprinting tool for the fast screening of organic archaeological samples and for providing information on the major components. GC/MS appeared to be more efficient in unravelling the sample composition at a molecular level, despite the long analysis time and the need for a wet chemical pretreatment. Both procedures were applied to characterize the organic material present as coatings in Roman and Egyptian amphorae. DE-MS successfully identified abietanic compounds, hence a diterpenic resinous material could be identified and its degree of oxidation assessed. GC/MS enabled us to identify dehydroabietic acid, 7-oxodehydroabietic acid, 15-hydroxy-7-oxodehydroabietic acid, 15-hydroxydehydroabietic acid, retene, tetrahydroretene, norabietatriene, norabietatetraene and methyl dehydroabietate. These oxidized and aromatized abietanes provided evidence that the amphorae examined were waterproofed with a pitch produced from resinous wood of plants from the Pinaceae family. The chemometric evaluation of the GC/MS data highlighted significant chemical differences between the pitches found in the two archaeological sites, basically related to differences in the production techniques of the materials and in their degradation pathways. Copyright © 2005 John Wiley & Sons, Ltd. [source]


The power of cooperative investigation: Summary and comparison of the HUPO Brain Proteome Project pilot study results

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 18 2006
Kai A. Reidegeld
Abstract Within the pilot phase of the HUPO Brain Proteome Project, nine participating laboratories analysed human (epilepsy and/or post mortem material) and mouse brain samples (embryonic, juvenile and adult), respectively, using a variety of different state of the art techniques. Thirty-seven different analytical approaches were accomplished. Of these analyses, 17 were done differentially, i.e. the protein expression patterns of the different samples (human or mouse) were compared. A catalogue of all proteins present in the respective sample was built in 20 analyses (mapping). All data were collected in the Data Collection Center in Bochum, Germany, and were reprocessed according to thoroughly defined parameters. In this report, a summary of all results and inter-laboratory comparisons with respect to the number of identified proteins, the analysed organism, and the used techniques is presented. [source]


Mass spectrometry in the characterization of ambers.

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 5 2008

Amber is a fossil resin constituted of organic polymers derived through complex maturation processes of the original plant resin. A classification of eight samples of amber of different geological age (Miocene to Triassic) and geographical origin is here proposed using direct mass spectrometric techniques, i.e. laser desorption ionization (LDI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI), in order to obtain a fingerprint related to the amber origin. Differences and similarities were detected among the spectra with the four methods, showing quite complex spectra, full of ionic species in the mass range investigated (up to m/z 2000). The evaluation required statistical analysis involving multivariate techniques. Cluster analysis or principal component analysis (PCA) generally did not show a clear clustering with respect to the age of samples, except for the APPI method, which allowed a satisfying clustering. Using the total ion current (TIC) obtained by the different analytical approaches on equal quantities of the different amber samples and plotted against the age, the only significant correlation appeared to be that involving APPI. To validate the method, four amber samples from Cretaceous of Spain were analyzed. Also in this case a significant correlation with age was found only with APPI data. PCA obtained with TIC values from all the MS methods showed a fair grouping of samples, according to their age. Three main clusters could be detected, belonging to younger, intermediate and older fossil resins, respectively. This MS analysis on crude amber, either solid or extract, followed by appropriate multivariate statistical evaluation, can provide useful information on amber age. The best results are those obtained by APPI, indicating that the quantity of amber soluble components that can be photoionized decreases with increasing age, in agreement with the formation of highly stable, insoluble polymers. Copyright © 2008 John Wiley & Sons, Ltd. [source]