Home About us Contact | |||
Diffusive Gradient (diffusive + gradient)
Selected AbstractsA model predicting waterborne cadmium bioaccumulation in Gammarus pulex: The effects of dissolved organic ligands, calcium, and temperatureENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2009Bastien Pellet Abstract Metal bioavailability depends on the presence of organic ligands in the water and on the concentrations of competitive cations. The present study aims at testing whether the diffusive gradient in thin films technique (DGT) could be used to take into account Cd speciation and its consequences on bioavailability in a bioaccumulation model and whether the influences of the Ca concentration and temperature also should be considered. Four kinetic experiments were conducted on Gammarus pulex: a calibration of Cd turnover rates and of the DGT lability in mineral water, a study of the influence of ethylenediaminetetraacetic acid (EDTA) and humic acids (HA) on uptake rates, and two experiments testing the influence of the Ca concentrations and temperature on Cd uptake clearance rates (ku). In mineral water, where Cd was considered fully labile, the ku was 0.46 L g,1 d,1, and the depuration rate was 0.032 d,1. The initial Cd influxes were lowered significantly by additions of 10 ,g L,1 of EDTA or 10 mg L,1 of HA in the water but not at 5 mg L,1 HA, even if DGT measurements proved that Cd formed Cd,HA complexes in that treatment. Increasing Ca concentrations lowered ku values, and a competitive inhibition model between Ca and Cd fitted the data. A 30% enhancement of ku values was observed when the temperature was increased by 8°C, which appeared comparatively as a weak effect. Thus, taking into account the metal speciation and the influence of the Ca concentration should improve Cd bioaccumulation modeling in amphipods. In freshwater, where metal bioavailability is reduced by the presence of dissolved organic matter, forecasting Cd waterborne uptake using the labile concentrations should allow robust comparisons between laboratory and field studies. [source] Bioavailable cadmium during the bioremediation of phenanthrene-contaminated soils using the diffusive gradients in thin-film techniqueLETTERS IN APPLIED MICROBIOLOGY, Issue 3 2006M.A. Amezcua-Allieri Abstract Aims:, To study the impact of fungal bioremediation of phenanthrene on trace cadmium solid-solution fluxes and solution phase concentration. Methods and Results:, The bioremediation of phenanthrene in soils was performed using the fungus Penicillium frequentans. Metal behaviour was evaluated by the techniques of diffusive gradient in thin-films (DGT) and filtration. Fluxes of cadmium (Cd) show a significant (P < 0·002) increase after the start of bioremediation, indicating that the bioremediation process itself releases significant amount of Cd into solution from the soil solid-phase. Unlike DGT devices, the solution concentration from filtration shows a clear bimodal distribution. We postulate that the initial action of the fungi is most likely to breakdown the surface of the solid phase to smaller, ,solution-phase' material (<0·45 ,m) leading to a peak in Cd concentration in solution. Conclusions:, Phenanthrene removal from soils by bioremediation ironically results in the mobilization of another toxic pollutant (Cd). Significance and Impact of the Study:, Bioremediation of organic pollutants in contaminated soil will likely lead to large increases in the mobilization of toxic metals, increasing metal bio-uptake and incorporation into the wider food chain. Bioremediation strategies need to account for this behaviour and further research is required both to understand the generality of this behaviour and the operative mechanisms. [source] Crops and genotypes differ in efficiency of potassium uptake and usePHYSIOLOGIA PLANTARUM, Issue 4 2008Zed Rengel Cultivars with increased efficiency of uptake and utilization of soil nutrients are likely to have positive environmental effects through reduced usage of chemicals in agriculture. This review assesses the available literature on differential uptake and utilization efficiency of K in farming systems. Large areas of agricultural land in the world are deficient in K (e.g. 3/4 of paddy soils in China, 2/3 of the wheatbelt in Southern Australia), with export in agricultural produce (especially hay) and leaching (especially in sandy soils) contributing to lowering of K content in the soil. The capacity of a genotype to grow and yield well in soils low in available K is K efficiency. Genotypic differences in efficiency of K uptake and utilization have been reported for all major economically important plants. The K-efficient phenotype is a complex one comprising a mixture of uptake and utilization efficiency mechanisms. Differential exudation of organic compounds to facilitate release of non-exchangeable K is one of the mechanisms of differential K uptake efficiency. Genotypes efficient in K uptake may have a larger surface area of contact between roots and soil and increased uptake at the root,soil interface to maintain a larger diffusive gradient towards roots. Better translocation of K into different organs, greater capacity to maintain cytosolic K+ concentration within optimal ranges and increased capacity to substitute Na+ for K+ are the main mechanisms underlying K utilization efficiency. Further breeding for increased K efficiency will be dependent on identification of suitable markers and compounding of efficiency mechanisms into locally adapted germplasm. [source] Assessment of zinc phytoavailability by diffusive gradients in thin filmsENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2005Osman Sonmez Abstract Asessment of Zn phytoavailability can be predicted with routine soil extractants, but these methods generally do not perform well across a wide range of soils. The newly developed technique of diffuse gradients in thin films (DGT) has been employed to determine phytoavailable Cu concentrations, but its suitability for determining plant available Zn concentrations has not been evaluated. A greenhouse study was conducted to assess the phytotoxicity thresholds and the phytoavailability of Zn to sorghum-sudan (Sorghum vulgare var. sudanese) grass by DGT, compared with CaCl2 extraction. A range of phytoavailable Zn concentrations was created by amending sand with ZnSO4 or with two different Zn mine wastes. Plant nutrients were added as Hoagland solution. In general, increasing Zn concentrations in the sand mixtures increased Zn adsorption by DGT and decreased the sorghum-sudan yield. A critical value for 90% of the control yield was chosen as an indicator of Zn toxicity. Critical values of DGT Zn, CaCl2 -extractable Zn, and plant tissue Zn were similar statistically across the three Zn sources. The performances of DGT and CaCl2 extraction for assessing Zn phytoavailability were similar. Shoot and root Zn concentrations of sorghum-sudan grass exceeded 500 mg kg,1 for many treatments. Calcium-to-Zn ratios for shoots were <32, suggesting Zn phytotoxicity. The data suggested that Zn phytotoxicity can be induced with mine wastes, although further evaluation is needed to establish a link between mine waste and Zn phytotoxicity. [source] Bioavailable cadmium during the bioremediation of phenanthrene-contaminated soils using the diffusive gradients in thin-film techniqueLETTERS IN APPLIED MICROBIOLOGY, Issue 3 2006M.A. Amezcua-Allieri Abstract Aims:, To study the impact of fungal bioremediation of phenanthrene on trace cadmium solid-solution fluxes and solution phase concentration. Methods and Results:, The bioremediation of phenanthrene in soils was performed using the fungus Penicillium frequentans. Metal behaviour was evaluated by the techniques of diffusive gradient in thin-films (DGT) and filtration. Fluxes of cadmium (Cd) show a significant (P < 0·002) increase after the start of bioremediation, indicating that the bioremediation process itself releases significant amount of Cd into solution from the soil solid-phase. Unlike DGT devices, the solution concentration from filtration shows a clear bimodal distribution. We postulate that the initial action of the fungi is most likely to breakdown the surface of the solid phase to smaller, ,solution-phase' material (<0·45 ,m) leading to a peak in Cd concentration in solution. Conclusions:, Phenanthrene removal from soils by bioremediation ironically results in the mobilization of another toxic pollutant (Cd). Significance and Impact of the Study:, Bioremediation of organic pollutants in contaminated soil will likely lead to large increases in the mobilization of toxic metals, increasing metal bio-uptake and incorporation into the wider food chain. Bioremediation strategies need to account for this behaviour and further research is required both to understand the generality of this behaviour and the operative mechanisms. [source] |