Diffusion Coefficient (diffusion + coefficient)

Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of Diffusion Coefficient

  • apparent diffusion coefficient
  • effective diffusion coefficient
  • water diffusion coefficient

  • Terms modified by Diffusion Coefficient

  • diffusion coefficient d

  • Selected Abstracts


    DEHYDRATION CHARACTERISTICS OF PAPAYA (CARICA PUBENSCENS): DETERMINATION OF EQUILIBRIUM MOISTURE CONTENT AND DIFFUSION COEFFICIENT

    JOURNAL OF FOOD PROCESS ENGINEERING, Issue 5 2009
    R. LEMUS-MONDACA
    ABSTRACT This study determined the drying kinetics behavior of papaya at different temperatures (40, 50, 60, 70 and 80C). Desorption isotherms were determined at 5, 20 and 50C over a relative humidity range of 10,95%. The Guggenheim, Anderson and de Boer models were found to be suitable for description of the sorption data. The samples reached equilibrium moisture of 0.10 ± 0.01 g water/g dry matter. Fick's second law model was used to calculate the effective diffusivity (6.25,24.32 × 10 - 10 m2/s). In addition, experimental data were fitted by means of seven mathematical models. The kinetic parameters and the diffusion coefficient were temperature-dependent and were evaluated by an Arrhenius-type equation. The modified Page model obtained the best-fit quality on experimental data according to statistical tests applied. PRACTICAL APPLICATIONS The main utility of this study is the application of both different empirical models and the diffusional model in tropical fruits' dehydration, which can be considered a basis for a very accurate estimation of drying time and the optimization of the same process. Two newly mathematical models are proposed in this study, through which a good fit on the data of experimental moisture content was achieved. The study of drying of papaya cultivated in Chile engages a great technological interest, because this product is widely used in the development of different products such as candying, canning, juice, syrup and marmalade. In addition, papayas cultivated in Chile, along with other tropical fruits cultivated in Brazil, Colombia and the Caribbean, have become especially important in the exportations of these countries. The major markets for these products include the U.S.A., the European Community and Asia. [source]


    WATER DIFFUSION COEFFICIENT AND MODELING OF WATER UPTAKE IN PACKAGED YERBA MATE

    JOURNAL OF FOOD PROCESSING AND PRESERVATION, Issue 4 2007
    LAURA A. RAMALLO
    ABSTRACT Effective water diffusion coefficient (Deff) was determined from the kinetics of moisture gain in a yerba mate bed. A value of 1.5 × 10,9 ± 0.4 × 10,9 m2/s was obtained at 40C and 90% relative humidity, by fitting experimental data to the series solution of Fick's second law. A model was developed to predict moisture profile and water uptake in packaged yerba mate. In order to simulate moisture gain in the packaged food, the model considers that the global process of humidity gain is controlled by combined mechanisms of package permeability, product sorption balances and water diffusion within the food bed. The explicit finite difference method was used to numerically solve the resulting equations. The validity of the model was tested by comparing predicted and experimental moisture profiles for high (WVTR , 20 g/m2/day) and low (WVTR , 400 g/m2/day) barrier packages. The model was found to adequately predict the profile of moisture content. [source]


    Water Apparent Diffusion Coefficient and T2 Changes in the Acute Stage of Maple Syrup Urine Disease: Evidence of Intramyelinic and Vasogenic-Interstitial Edema

    JOURNAL OF NEUROIMAGING, Issue 2 2003
    Andrea Righini MD
    ABSTRACT Background. The acute phase of the neonatal classical form of maple syrup urine disease (MSUD) is usually associated with generalized brain edema. Methods and Results. The authors present the case of a newborn infant in the acute stage of the classical form of MSUD in whom a remarkable decrease in the water apparent diffusion coefficient (ADC) in advanced myelinating white matter areas was associated with an increase in the T2 signal. This diffusion magnetic resonance imaging (MRI) pattern appears to be compatible with a rare kind of cytotoxic edema, the so-called intramyelinic edema. At the same time, an increase in the ADC was seen in unmyelinated areas together with an increase in the T2 signal, a sign of a coexistent vasogenic-interstitial edema. Conclusions. ADC measurements in MSUD provide more specific information than conventional MRI about the pathophysiology of white matter changes. [source]


    White matter changes in extremely preterm infants, a population-based diffusion tensor imaging study

    ACTA PAEDIATRICA, Issue 6 2010
    Béatrice Skiöld
    Abstract Aim:, To investigate cerebral white matter (WM) abnormalities (J Pediatr 2003; 143: 171) and diffuse and excessive high signal intensities (DEHSI), (J Pediatr 1999; 135: 351) in a cohort of extremely preterm infants born in Stockholm during a 3-year period, using magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). Methods:, MRI at term-equivalent age was performed in 109 infants and DTI data were acquired in 54 infants. Survival rate in the entire cohort was 67%. Sixteen term-born healthy control infants were scanned for comparison. Results:, No or mild WM abnormalities were seen in 86% of infants and 14% had moderate or severe WM abnormalities. DEHSI were seen in infants with all grades of white matter abnormalities and were present in 56% of infants. In the WM at the level of centrum semiovale, infants with any WM abnormalities or DEHSI had lower Fractional Anisotropy and higher Apparent Diffusion Coefficient compared with control infants. No significant differences in diffusion were seen in infants without DEHSI compared with the controls in this region. Compared with controls, the preterm infants had significantly altered diffusion in the corpus callosum. Conclusion:, Only 14% of the extremely preterm infants had moderate or severe WM abnormalities on MRI. However, the incidence of DEHSI was high. In the DEHSI regions, changes in diffusion parameters were detected, indicating altered WM organization. [source]


    Measurement of Spin Diffusion Coefficients in Glassy Polymers: Failure of a Simple Scaling Law

    MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 2 2008
    Bernard Meurer
    Abstract For a series of polymers, the spin diffusion coefficients D do not scale as predicted from a simple expression based on regularly spaced nuclei. We compare D for PVA and polystyrene with their side group either protonated or deuterated. For polystyrene, D is considerably reduced from 600,800 to 65 nm2,·,s,1. For PVA, D is already small for the fully protonated chain and is only slightly reduced from 170 to 130 nm2,·,s,1. This indicates that the rapidly rotating methyl group does not contribute appreciably to spin diffusion between neighboring chains and confirms that the mean proton density is not the pertinent parameter to control D. [source]


    Mechanisms of transjunctional transport of NaCl and water in proximal tubules of mammalian kidneys

    ACTA PHYSIOLOGICA, Issue 1 2002
    F. KIILArticle first published online: 30 APR 200
    ABSTRACT Tight junctions and the intercellular space of proximal tubules are not accessible to direct measurements of fluid composition and transport rates, but morphological and functional data permit analysis of diffusion and osmosis causing transjunctional NaCl and water transport. In the S2 segment NaCl diffuses through tight junctions along a chloride gradient, but against a sodium gradient. Calculation in terms of modified Nernst,Fick diffusion equation after eliminating electrical terms shows that transport rates (300,500 pmol min,1 mm,1 tubule length) and transepithelial voltage of +2 mV are in agreement with observations. Diffusion coefficients are Dtj=1500 ,m2 s,1 in the S1 segment, and Dtj=90,100 ,m2 s,1 in the S2 segment where apical intercellular NaCl concentration is 132 mM, 1 mM below complete stop (Dtj=0 and Donnan equilibrium). Tight junctions with gap distance 6 Å are impermeable to mannitol (effective molecular radius 4 Å); reflection coefficients are ,=0.92 for NaHCO3 and ,=0.28 for NaCl, because of difference in anion size. The osmotic force is provided by a difference in effective transjunctional osmolality of 10 mOsm kg,1 in the S1 segment and 30 mOsm kg,1 in the S2 segment, where differences in transjunctional concentration contribute with 21 mOsm kg,1 for NaHCO3 and ,4 mOsm kg,1 for NaCl. Transjunctional difference of 30 mOsm kg,1 causes a volume flow of 2 nL min,1 mm,1 tubule length. Luminal mannitol concentration of 30 mM stops all volume flow and diffusive and convective transport of NaCl. In conclusion, transjunctional diffusion and osmosis along gradients generated by transcellular transport of other solutes account for all NaCl transport in proximal tubules. [source]


    Aqueous chloramine diffusion into elastomers

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2010
    Raja M. Nagisetty
    Abstract Aqueous chloramine diffusion into styrene butadiene rubber (SBR) and natural rubber was analyzed using approximate analytical and numerical solutions of Fick's second law of diffusion to develop long-term mass intake prediction curves. Diffusion coefficients were calculated for 1 mg/L chloramine concentration at three temperatures (23, 45, and 70°C) and also for 23°C at three chloramine concentrations (1, 30, and 60 mg/L). The reasonableness of using increased temperature and/or chloramine concentration to accelerate the diffusion process to obtain long-term information was discussed. For 1 mg/L chloramine concentration, the activation energy for the diffusion of chloramines into SBR and natural rubber were computed to be 51.13 and 77.29 kJ/mol, respectively. Also, concentration profiles were developed to understand the extent of penetration through the elastomer thickness over time and temperature. Considering the reports of elastomeric compound failure in chloramine disinfectant water distribution systems because of swelling, this study will be helpful in understanding the performance of the elastomeric compounds in the system. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


    Carbon dioxide extraction of residual chloroform from biodegradable polymers

    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 5 2002
    Wendy S. Koegler
    Abstract Biodegradable polymeric devices for drug delivery and tissue engineering are often fabricated with the use of organic solvents and may still contain significant amounts of solvent (> 1 wt%) even after aggressive vacuum drying. This excess solvent can interfere with tissue response and the mechanical properties of the devices. The aim of this article is to demonstrate that liquid CO2 extraction can be used to reduce residual solvent in dense poly(L -lactide-co-glycolide) devices to 50 ppm relatively quickly and with minimal changes in architecture under some conditions. Two liquid CO2 extraction systems were developed to examine the removal of residual solvents from bar-shaped PLGA devices: (1) a low-pressure (1400 psi) batch system, and (2) a high-pressure (5000 psi) continuous-flow system. Eight hours of extraction in the high-pressure system reduced residual chloroform in 3 mm thick bars below the 50-ppm target. A simple Fickian diffusion model was fit to the extraction results. Diffusion coefficients ranged from 1.10×10,6 cm2/s to 2.64×10,6 cm2/s. The model predicts that ,1 h is needed to dry 1-mm bars to chloroform levels below 50 ppm, and 7 h are needed for 3 mm thick bars. The micro- and macroarchitectures of porous PLGA scaffolds created by particulate leaching were not significantly altered by CO2 drying if the salt used to make the pores was not removed before drying. © 2002 Wiley Periodicals, Inc. J Biomed Mater Res (Appl Biomater) 63: 567,576, 2002 [source]


    Molecular dynamics simulation of the hydrocarbon region of a biomembrane using a reduced representation model

    JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 14 2001
    Lewis Whitehead
    Abstract The development of a coarse-grained reduced-representation model of the hydrocarbon region of a biological membrane is reported. The potential is based on the popular Gay,Berne model of liquid crystals, and involves the linking of individual Gay,Berne ellipsoids by harmonic springs to form each hydrocarbon chain. Diffusion coefficients and order parameters have been calculated by molecular dynamics computer simulations for a range of parameter sets. The results clearly demonstrate the presence of a phase transition from an ordered low-temperature solid phase reminiscent of the L,, phase of phospholipids, to a high-temperature disordered phase reminiscent of the L, phase. Order parameters calculated for each layer of the model are consistent with the experimental segmental order parameters reported for dipalmitoyl phosphatidylcholine. The application of this model to the study of small molecule diffusion within the membrane core is proposed. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1622,1633, 2001 [source]


    Diffusion-weighted imaging of the spinal cord: Interleaved echo-planar imaging is superior to fast spin-echo

    JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 4 2002
    Roland Bammer PhD
    Abstract Purpose To compare and evaluate two novel diffusion-weighted sequences, based either on fast spin-echo (FSE) or interleaved echo-planar imaging (EPI) methods, as potential tools for investing spinal cord abnormalities. Materials and Methods Following recent improvements, both interleaved EPI (IEPI) and FSE techniques could be alternative approaches for rapid diffusion-weighted imaging (DWI). Therefore, a navigated diffusion-weighted multishot FSE sequence and a fat-suppressed navigated diffusion-weighted IEPI sequence with local shimming capabilities were tested. Both methods were compared in a consecutive series of five healthy volunteers and five patients with suspected intramedullary lesions. The sequences were graded qualitatively as either superior, inferior, or equal in quality, and also quantitatively by measuring the amount of ghosting artifacts in the background. Quantitative measurements of the diffusion coefficients within the spine were included. Results The overall image quality of IEPI was superior to FSE. Two out of five FSE scans were rated with poor image quality, whereas all IEPI scans were of sufficient quality. The ghosting levels ranged from approximately 3.3% to 6.2% for IEPI and from approximately 7.5% to 18.9% for FSE. Diffusion coefficients measured in healthy volunteers were similar for both IEPI and FSE, but showed higher fluctuations with the FSE technique. Conclusion Despite potential advantages of FSE, the IEPI technique is preferable for DWI applications in the spinal cord. J. Magn. Reson. Imaging 2002;15:364,373. © 2002 Wiley-Liss, Inc. [source]


    Dehydration kinetics of red pepper (Capsicum annuum L var Jaranda)

    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 7 2003
    N Sanjuán
    Abstract Shredded and whole red pepper samples were dehydrated in a laboratory drier with a through-flow air velocity of 0.5,m,s,1 at 50, 55, 60 and 70,°C. Shredded peppers dried faster than whole peppers. The drying behaviour of whole samples was characterised by a constant- and a falling-rate drying period, whilst that of shredded samples was characterised by a falling-rate drying period only. The mass transfer coefficient for whole samples during the constant-rate period was computed experimentally. The effect of temperature on the mass transfer coefficient was described by the Arrhenius model. The activation energy was 58,kJ,mol,1. In the falling-rate period the mass transfer was described by a diffusional model, and the effective diffusion coefficient at each temperature was determined. Diffusion coefficients were estimated to lie between 4.38,×,10,11 and 10.99,×,10,11,m2,s,1 for whole peppers and between 37.23,×,10,11 and 99.61,×,10,11,m2,s,1 for shredded peppers. The effect of temperature on the effective diffusion coefficient was described by the Arrhenius equation, with an activation energy of 44,kJ,mol,1 for whole peppers and 56,kJ,mol,1 for shredded peppers. © 2003 Society of Chemical Industry [source]


    Loading and Release of Ibuprofen in Multi- and Monofilament Surgical Sutures

    MACROMOLECULAR BIOSCIENCE, Issue 9 2006
    Raül Zurita
    Abstract Summary: The preparation of mono- and multifilament sutures incorporating ibuprofen as an anti-inflammatory agent is considered. Poly(p -dioxanone) monofilament samples can be loaded by a molecular diffusion process using a swelling agent such as dichloromethane. The mechanical properties have been measured and have not shown a significant change for the ibuprofen loaded samples in knot tensile assays. The kinetics of both the loading process and the release in a Sörensen's medium at 37,°C have been investigated. Diffusion coefficients have also been estimated from film and slab poly(p -dioxanone) samples containing ibuprofen and their release behavior compared to that shown by monofilaments. Release from a coating copolymer based on lactide, , -caprolactone and trimethylene carbonate (PLA/PCA/PTMC 10/60/30) has also been studied. This coating solubilizes ibuprofen molecules well and can be used for braided sutures or when a rapid dose of ibuprofen is preferred. [source]


    Mass transport studies of different additives in polyamide and exfoliated nanocomposite polyamide films for food industry

    PACKAGING TECHNOLOGY AND SCIENCE, Issue 2 2010
    David Antonio Pereira de Abreu
    Abstract The development of new food packaging films through the incorporation of nanoparticles, and the effect of the nanoparticles on the process of migration of the substances used in manufacturing the new films is expected to lead to an improvement in the shelf life of food and thus, consumer safety and health. In recent years, attention has focused on nanocomposites because these compounds often exhibit unexpected hybrid properties derived from synergistic reactions between nanoparticles and the polymeric matrix. The exfoliation of nanoclays in polyamide film provides a film with better barrier properties than that obtained through the intercalation of nanoclays. Migration of chemicals from food packaging into food may produce potential adverse health effects because of exposure to toxic compounds. The present study addressed the migration of caprolactam, 5-Chloro-2-(2,4-dichlorophenoxy)phenol (triclosan) and trans,trans-1,4-diphenyl-1,3-butadiene (DPBD) from polyamide and polyamide-nanoclays to different types of food simulants. The values for limit of detection (LOD) obtained for caprolactam, triclosan and DPBD was 0.5,mg/L, 0.02,mg/L and 0.01,mg/L, respectively. Furthermore, instrumental precision was evaluated through repeatability injections, resulting in relative standard deviations lower than 3.08%. Diffusion coefficients were calculated according to a mathematical model based on Fick's Second Law, and the results were discussed in terms of the parameters that may have the greatest effect on migration. The presence of polymer nanoparticles was found to slow down the rate of migration of substances from the matrix polymer into the food up to six times. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    CO2 sorption and diffusion in polymethyl methacrylate,clay nanocomposites

    POLYMER ENGINEERING & SCIENCE, Issue 7 2005
    Allan R. Manninen
    This study reports the glass transition temperature (Tg), and sorption and diffusion of subcritical CO2 gas in polymethyl methacrylate (PMMA) nanocomposites containing organically modified smectite clay, Cloisite 20A (C20A). A range of methods for preparing the PMMA-clay nanocomposites was investigated and a solution coprecipitation method was selected as the most appropriate. Using this method, PMMA nanocomposite containing 2, 4, 6, and 10 wt% nanoclay loadings were prepared. Wide-angle X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) indicated that the 2 wt% nanocomposite materials had a well-dispersed intercalated clay structure. The Tg for PMMA-C20A nanocomposites, as measured by differential scanning calorimetry (DSC), was found to be independent of the clay loading. CO2 solubility studies from 0 to 65°C and pressures up to 5.5 MPa using an in situ gravimetric technique were performed on compression-molded films. The organoclay was found to have no effect on the solubility of CO2 in PMMA, and therefore the solubility of CO2 in the nanocomposite can be determined from the solubility of CO2 in the matrix polymer alone. Diffusion coefficients were determined using the appropriate transport models for these test conditions and the diffusion coefficients for CO2 in PMMA-C20A composites were found to increase with organoclay loading. It is believed that the processing path taken to prepare the nanocomposites may have resulted in the agglomeration of the C20A organoclay, thereby preventing the polymer chains from fully wetting and intercalating a large number of clay particles. These agglomerations are responsible for the formation of large-scale holes within the glassy nanocomposite, which behave as low resistance pathways for gas transport within the PMMA matrix. POLYM. ENG. SCI., 45:904,914, 2005. © 2005 Society of Plastics Engineers [source]


    Four Generations of Water-Soluble Dendrimers with 9 to 243 Benzoate Tethers: Synthesis and Dendritic Effects on Their Ion Pairing with Acetylcholine, Benzyltriethylammonium, and Dopamine in Water

    CHEMISTRY - A EUROPEAN JOURNAL, Issue 18 2008
    Elodie Boisselier
    Abstract Water-soluble benzoate-terminated dendrimers of four generations (from G0 with 9 branches to G3 with 243 branches) were synthesized and fully characterized. They form water-soluble assemblies by ion-pairing interactions with three cations of medicinal interest (acetylcoline, benzyltriethylammonium, and dopamine), which were characterized and investigated by 1H,NMR spectroscopy, whereas such interactions do not provoke any significant shift of 1H,NMR signals with the monomeric benzoate anion. The calculated association constants confirm that the dendritic carboxylate termini reversibly form ion pairs and aggregates. Diffusion coefficients and hydrodynamic diameters of the dendrimers, as well as changes thereof on interaction with the cations, were evaluated by DOSY experiments. The lack of increase of dendrimer size on addition of the cations and the upfield shifts of the 1H,NMR signals of the cation indicate encapsulation within the hydrophobic dendrimer interiors together with probable backfolding of the benzoate termini. [source]


    NMR diffusion measurements under chemical exchange between sites involving a large chemical shift difference

    CONCEPTS IN MAGNETIC RESONANCE, Issue 2 2010
    S. Leclerc
    Abstract This study concerns the thallium-205 cation in aqueous solution in the presence of a calixarene molecule. Although the measurement of the self-diffusion coefficient of pure thallium (without calixarene in the aqueous solution) does not pose any particular problem, major difficulties are encountered with the standard method using gradient strength increment as soon as thallium is partly complexed by calixarene. With static magnetic field gradients, the NMR signal is so weak that it prevents any reliable measurement, whereas radio frequency (rf) field gradients lead to an unrealistic value of the diffusion coefficient. This failure is explained by the fact that thallium is in fast exchange between two sites (complexed and free thallium) thus exhibiting a single NMR signal although, in the course of the experiment, two signals, with an important difference in resonance frequencies (due to the large thallium chemical shift range), are effectively involved. With the objective to understand these quite unexpected observations, the theory underlying NMR diffusion experiments is first reviewed, and criteria of fast exchange are discussed for three parameters: chemical shifts, relaxation rates, and diffusion coefficients. It turns out that off-resonance effects are responsible for unwanted defocusing due to rf pulses in the static magnetic field gradient method and for time-dependent gradients in the rf field gradient method. Concerning the latter, a remedy is proposed which consists in applying the stronger gradient and incrementing the gradient pulse durations. After correction for relaxation, the expected value of the diffusion coefficient is retrieved. © 2010 Wiley Periodicals, Inc. Concepts Magn Reson Part A 36A: 127,137, 2010. [source]


    Extensions of the 3-Dimensional Plasma Transport Code E3D

    CONTRIBUTIONS TO PLASMA PHYSICS, Issue 1-3 2004
    A. Runov
    Abstract One important aspect of modern fusion research is plasma edge physics. Fluid transport codes extending beyond the standard 2-D code packages like B2-Eirene or UEDGE are under development. A 3-dimensional plasma fluid code, E3D, based upon the Multiple Coordinate System Approach and a Monte Carlo integration procedure has been developed for general magnetic configurations including ergodic regions. These local magnetic coordinates lead to a full metric tensor which accurately accounts for all transport terms in the equations. Here, we discuss new computational aspects of the realization of the algorithm. The main limitation to the Monte Carlo code efficiency comes from the restriction on the parallel jump of advancing test particles which must be small compared to the gradient length of the diffusion coefficient. In our problems, the parallel diffusion coefficient depends on both plasma and magnetic field parameters. Usually, the second dependence is much more critical. In order to allow long parallel jumps, this dependence can be eliminated in two steps: first, the longitudinal coordinate x3 of local magnetic coordinates is modified in such a way that in the new coordinate system the metric determinant and contra-variant components of the magnetic field scale along the magnetic field with powers of the magnetic field module (like in Boozer flux coordinates). Second, specific weights of the test particles are introduced. As a result of increased parallel jump length, the efficiency of the code is about two orders of magnitude better. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Measuring diffusion parameters in the brain: comparing the real-time iontophoretic method and diffusion-weighted magnetic resonance

    ACTA PHYSIOLOGICA, Issue 1 2009
    I. Vorisek
    Abstract The extracellular space (ECS) diffusion parameters influence the movement of ions, neuroactive substances, hormones and metabolites in the nervous tissue. They also affect extrasynaptic transmission, a mode of signal transmission dependent solely on diffusion. This review compares in detail two methods for studying diffusion in the brain: the real-time iontophoretic tetramethylammonium method for ECS volume fraction and tortuosity measurements and diffusion weighted-magnetic resonance imaging for measuring the apparent diffusion coefficient of water. The results obtained using both methods under physiological conditions (post-natal development, ageing) or in pathologies (brain injury, ischaemia) and their similarities and differences are discussed. [source]


    Mechanisms of intercellular hypertonicity and isotonic fluid absorption in proximal tubules of mammalian kidneys

    ACTA PHYSIOLOGICA, Issue 1 2002
    F. KIILArticle first published online: 30 APR 200
    ABSTRACT The main purpose of this theoretical analysis (second of two articles) is to examine whether transjunctional diffusion of NaCl causes intercellular hypertonicity, which permits transcellular water transport across solute-impermeable lateral cell membranes until osmotic equilibration. In the S2 segment with tubular NaCl concentration 140 mM, the calculated apical intercellular NaCl concentration is c0 , 132 mM, which exceeds peritubular NaCl concentration by 12 mM or 22 mOsm kg,1. Variations in volume flow, junctional reflection coefficient (,NaCl=0.25,0.50), gap distance (g=6,8 Å), junctional depth (d=18,100 Å), intercellular diffusion coefficient (DLIS=500,1500 ,m2 s,1) and hypothetical active NaCl transport alter c0 only by a fraction of 1 mM. However, dilution and back-leakage of NaHCO3 lower apical intercellular hyperosmolality to ,18 mOsm kg,1. Water transport through solute-impermeable lateral cell membranes continues until intercellular and cellular osmolalities are equal. Transcellular and transjunctional volume flow are of similar magnitude (2 nL min,1 mm,1 tubule length) in the S2 segment. Thus, diffusion ensures isotonic absorption of NaCl. Two-thirds of NaHCO3 and other actively transported sodium salts are extruded into the last third of the exponentially widening intercellular space where the exposure time is only 0.9 s. Osmotic equilibration is dependent on aquaporins in the cell membranes. If permeability to water is low, transcellular water transport stops; tubular fluid becomes hypotonic; NaCl diffusion diminishes, but transjunctional water transport remains unaltered as long as transcellular transport of NaHCO3 and other solutes provides the osmotic force. [source]


    Solution of the linear diffusion equation for modelling erosion processes with a time varying diffusion coefficient

    EARTH SURFACE PROCESSES AND LANDFORMS, Issue 10 2008
    Georgios Aim.
    Abstract In the present paper the differential equation of the temporal development of a landform (mountain) with a time dependent diffusion coefficient is solved. It is shown that the shape and dimensions of the landform at time t are independent of the specific variation of the diffusion coefficient with time; they only depend on the mean value of the diffusion coefficient in the time interval where the erosion process takes place. Studying the behaviour of the solution of the differential equation in the wave number domain, it is concluded that Fourier analysis may help in estimating, in quantitative terms, the initial dimensions, the age or, alternatively, the value of the diffusion coefficient of the landform. The theoretical predictions are tested on a hill of the southern part of the Ural mountainous region, in order to show how the results of the mathematical analysis can be used in describing, in quantitative terms, the morphological development of landforms due to erosion processes. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Electrochemical Behavior and Determination of L -Tyrosine at Single-walled Carbon Nanotubes Modified Glassy Carbon Electrode

    ELECTROANALYSIS, Issue 11 2008
    Xiaozhi Yu
    Abstract Based on single-walled carbon nanotubes (SWCNTs) modified glassy carbon electrode (GCE/SWCNTs), a novel method was presented for the determination of L -tyrosine. The GCE/SWCNTs exhibited remarkable catalytic and enhanced effects on the oxidation of L -tyrosine. In 0.10,mol/L citric acid-sodium citrate buffer solution, the oxidation potential of L -tyrosine shifted negatively from +1.23,V at bare GCE to +0.76,V at GCE/SWCNTs. Under the optimized experimental conditions, the linear range of the modified electrode to the concentration of L -tyrosine was 5.0×10,6,2.0×10,5,mol/L (R1=0.9952) and 2.7×10,5,2.6×10,4,mol/L (R2=0.9998) with a detection limit of 9.3×10,8,mol/L. The kinetic parameters such as , (charge transfer coefficient) and D (diffusion coefficient) were evaluated to be 0.66, 9.82×10,5,cm2 s,1, respectively. And the electrochemical mechanism of L -tyrosine was also discussed. [source]


    Microdimensional Polyaniline: Fabrication and Characterization of Dynamics of Charge Propagation at Microdisk Electrodes

    ELECTROANALYSIS, Issue 17 2004
    Karolina Caban
    Abstract We describe fabrication of microdimensional polyanilne films in a controlled manner by voltammetric potential cycling or controlled potential electrolysis on platinum microdisk electrodes. The film grows in a form of hemispherical microdeposits, and its size largely exceeds the size of a Pt microdisk. Consequently, the film covers both the Pt substrate as well as the surrounding glass seal. Since the adhering polyaniline layer is conducting, the latter situation may lead to an increase in the effective electrode surface area. The lateral growth of polyaniline films outside the microdisk has also been demonstrated by performing diagnostic voltammetric experiments with use of a double microdisk set-up in which independent polarization of each disk is feasible. Microelectrode-based chronocoulometry, that involves an uncomplicated well-defined reduction potential step starting from the emeraldine (conducting) form and ending at leucoemeraldine (nonconducting) form, yields (upon application of a sufficiently short pulse) a well-defined linear response of charge versus square root of time that is consistent with the linear effective diffusion as the predominant charge propagation mechanism. When describing the system kinetics in terms of the effective (apparent) diffusion coefficient, we expect this parameter to be on the level of 10,8,cm2 s,1 or lower. The relative changes in dynamics of charge transport are discussed with respect to the polyaniline film loading, the size of microdisk electrode, expansion of the active electrode area, and the choice of electrolyte (strong acid) anion. The results are consistent with the view that when Pt microelectrode is modified with PANI deposit exceeding the size of the microdisk substrate, it behaves in a way as if its surface area is effectively much larger than the geometric area of Pt microdisk. [source]


    Voltammetric Elucidation of Ion Transfer Through an Extremely Thin Membrane

    ELECTROANALYSIS, Issue 9 2004
    Nobuyuki Ichieda
    Abstract Digital simulation of the cyclic voltammogram for the ion transfer through a liquid membrane of thickness from 1,mm to 10,nm was performed. The magnitude of current and the shape of the voltammogram simulated for extremely thin membrane (10,nm thick) were similar to those observed experimentally with a bilayer lipid membrane, BLM, of about 10,nm in thick, when the diffusion coefficient of an ion in the BLM was assumed to be extraordinary small (10,13 to 10,14,cm2 s,1). [source]


    Numerical modeling of the Joule heating effect on electrokinetic flow focusing

    ELECTROPHORESIS, Issue 10 2006
    Kuan-Da Huang
    Abstract In electrokinetically driven microfluidic systems, the driving voltage applied during operation tends to induce a Joule heating effect in the buffer solution. This heat source alters the solution's characteristics and changes both the electrical potential field and the velocity field during the transport process. This study performs a series of numerical simulations to investigate the Joule heating effect and analyzes its influence on the electrokinetic focusing performance. The results indicate that the Joule heating effect causes the diffusion coefficient of the sample to increase, the potential distribution to change, and the flow velocity field to adopt a nonuniform profile. These variations are particularly pronounced under tighter focusing conditions and at higher applied electrical intensities. In numerical investigations, it is found that the focused bandwidth broadens because thermal diffusion effect is enhanced by Joule heating. The variation in the potential distribution induces a nonuniform flow field and causes the focused bandwidth to tighten and broaden alternately as a result of the convex and concave velocity flow profiles, respectively. The present results confirm that the Joule heating effect exerts a considerable influence on the electrokinetic focusing ratio. [source]


    Modeling polycyclic aromatic hydrocarbon composition profiles of sources and receptors in the Pearl River Delta, China,

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2008
    Chang Lang
    Abstract Changes in concentration profiles of polycyclic aromatic hydrocarbons (PAHs) from emission sources to various environmental media in the Pearl River Delta, China were investigated using fugacity modeling under steady state assumption. Both assumed evenly and observed unevenly distributed PAH moles emission profiles were applied. Applicability of the fugacity model was validated against the observed media PAH concentrations and profiles. At equal emission rates, the differences of media concentrations among various PAHS were as high as three (air) to seven (soil and sediment) orders of magnitude. Dramatic changes of PAH profiles from emission sources to various bulk environmental media also were demonstrated by using the actual emission rates. In general, the fractions of higher molecular weight PAHs in air and water were much lower than those at the emission sources, although the PAH profiles in soil and sediment were characterized by a significant reduction of lower molecular weight PAHs. It is likely that the field-measured median concentration profiles cannot be adopted directly for source apportionment without rectification. The most influential parameters affecting PAH profiles in the study area were emission rates, degradation rates, adsorption coefficient, Henry's law constant, PAH concentrations in upstream surface water, fugacity ratio, vapor pressure, and diffusion coefficient in air. [source]


    Prolonged Febrile Seizures Are Associated with Hippocampal Vasogenic Edema and Developmental Changes

    EPILEPSIA, Issue 9 2006
    Rod C. Scott
    Summary:,Purpose: There is mounting evidence that a prolonged febrile seizure (PFS) can cause acute hippocampal edema although the nature of that edema remains uncertain. The principal aims of the current study were: (1) to use apparent diffusion coefficient (ADC) measurements to further characterize the hippocampal edema previously identified within 5 days of a PFS, and (2) to determine whether the age dependency of ADC in the hippocampus is different in patients when compared to a control population following a PFS. Methods: Diffusion weighted imaging was acquired in 23 children within 5 days of a PFS, and in 14 of these children a mean of 5.5 months later. Twenty-four control children were enrolled. Results: There was a reduction in ADC between the acute and follow-up investigations [mean reduction = 0.0072 mm2/s/month since PFS (95% confidence interval; 0.0001,0.014 mm2/s/month since PFS), p = 0.048] consistent with early vasogenic edema, followed by recovery in children investigated within 2 days of a PFS. In addition, the behavior of ADC with respect to age was different in patients when compared to control subjects [mean difference in slope =,0.155 mm2/s/log10 age (95% confidence interval; ,0.290,0.0203 mm2/s/log10 age), p = 0.029], in that the expected age dependence was observed only in the control subjects. Conclusion: We suggest that these latter findings are most consistent with a preexisting developmental hippocampal abnormality that may predispose individuals to having a PFS. [source]


    Age-related white matter lesions are associated with reduction of the apparent diffusion coefficient in the cerebellum

    EUROPEAN JOURNAL OF NEUROLOGY, Issue 9 2007
    P. Bugalho
    Cerebellar apparent diffusion coefficient (ADC) was found to be increased after acute cerebral hemispheric stroke. There are no data on cerebellar ADC changes in patients with chronic, age-related white matter lesions (ARWML). We aimed to determine longitudinal ADC variations on cerebral hemispheric and cerebellar white matter regions of patients with ARWML in order to study relations between ADC changes in both regions. ADC was measured serially (1-year interval) on lesioned periventricular frontal white matter, frontal and parietoccipital normal appearing white matter and middle cerebellar peduncles, on 19 aged patients with ARWML, which also underwent gait assessment. We compared regional ADC at 0 and 1 year and calculated variation percentages for each region. Correlation analysis was made between ADC variation in cerebellar regions and in contralateral hemispheric regions and between cerebellar ADC at 1 year and walking speed. After 1 year, ADC was higher on lesioned periventricular frontal white matter and lower on cerebellar regions. ADC variations on these regions were negatively correlated. Cerebellar ADC measured after 1 year was positively correlated with walking speed. This suggests a link between vascular disease progression inside frontal lesions and ADC reduction in contralateral cerebellar peduncles. Chronic ischemia in frontal white matter could have interrupted frontal-cerebellar circuits, producing hypometabolism in cerebellar regions (and worse performance on motor tasks), decreased perfusion and hence ADC reduction. [source]


    Modelling of colloid leaching from unsaturated, aggregated soil

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 3 2007
    M. Laegdsmand
    Summary The migration of colloids in soils can enhance the leaching of strongly sorbing contaminants. We present a model for the simulation of colloid leaching from unsaturated, aggregated soil media under stationary flow. Transport in the intra-aggregate pores is simulated by convection,dispersion, and transport in the interaggregate pores, and a stagnant layer of water surrounding the aggregates, is simulated by diffusion. The model describes the release of colloids from soil aggregates, sorption and desorption processes at the air,water interfaces, and flocculation and subsequent straining from the flowing water. All three processes were simulated as functions of ionic strength. Transport of ions in intra-aggregate pores was simulated by Fickian diffusion. The model was calibrated against experimental results of colloid leaching from columns packed with natural soil aggregates. The aggregates were of two soils differing in organic matter content. On each soil a single calibrated parameter set could describe the experiments with the three ionic strengths. The parameters for release of colloids from the aggregate surface and the sorption properties of the air,water interface were different for the two soils. The key parameters for leaching were the thickness of the stagnant layer of water surrounding the aggregates, the mechanical dispersion, the maximum concentration of colloids at the surface of the aggregates, the sorption capacity and rate coefficient of the colloids at the air,water interface, and the colloid diffusion coefficient. Simulations were also done with two additional irrigation intensities at one ionic strength. Simulated leaching was greater than measured leaching at both irrigation intensities, but the diffusion-controlled release of colloids from the aggregates was simulated correctly. [source]


    Stress Corrosion Cracking and Hydrogen Diffusion in Magnesium,

    ADVANCED ENGINEERING MATERIALS, Issue 8 2006
    A. Atrens
    Evaluation of recent data for hydrogen (H) diffusion in magnesium (Mg) yielded a new equation for the diffusion coefficient of H in Mg. This indicates that there can be significant H transport ahead of a stress corrosion crack in Mg at ambient temperature and that H may be involved in the mechanism of stress corrosion cracking in Mg. [source]


    Physical characterization of plakophilin 1 reconstituted with and without zinc

    FEBS JOURNAL, Issue 14 2000
    Ilse Hofmann
    Plakophilin 1 (PKP1) belongs to the arm -repeat protein family which is characterized by the presence of a conserved 42-amino-acid motif. Despite individual members of the family containing a similar type of structural domain, they exhibit diverse cellular functions. PKP1 is ubiquitously expressed in human tissues and, depending on the type of cell, found prominently in the karyoplasm and/or in desmosomes. In surface plasmon resonance detection experiments, we noticed that PKP1 specifically bound zinc but not calcium or magnesium. Therefore we have used circular dichroism spectroscopy, limited proteolysis, analytical ultracentrifugation, electron microscopy and dynamic light scattering to establish the physical properties of recombinant PKP1 depending on the presence or absence of zinc. The , helix content of PKP1 was considerably higher when reconstituted with zinc than without. By atomic absorption spectroscopy 7.3 atoms zinc were shown to be tightly associated with one molecule of wild-type PKP1. The zinc-reconstituted protein formed globular particles of 21.9 ± 8.4 nm diameter, as measured by electron microscopy after glycerol spraying/rotary metal shadowing. In parallel, the average sedimentation coefficient (s20,w) for zinc-containing PKP1 was 41S and its diffusion coefficient, as obtained by dynamic light scattering, 1.48 × 10,7 cm2·s,1. The molecular mass of 2.44 × 106 obtained from s and D yields an average stoichiometry of 30 for the PKP1 oligomer. In contrast, PKP1, reconstituted without zinc, contained no significant amount of zinc, sedimented with 4.6S, and was present in monomeric form as determined by sedimentation equilibrium centrifugation. [source]