Diet Lead (diet + lead)

Distribution by Scientific Domains


Selected Abstracts


MicroRNA Expression Profile in Lieber-DeCarli Diet-Induced Alcoholic and Methionine Choline Deficient Diet-Induced Nonalcoholic Steatohepatitis Models in Mice

ALCOHOLISM, Issue 10 2009
Angela Dolganiuc
Background:, Alcoholic and nonalcoholic steatohepatitis are leading causes of liver diseases worldwide. While of different etiology, these share common pathophysiological mechanisms and feature abnormal fat metabolism, inflammation and fibrosis. MicroRNAs (miRNA) are highly conserved noncoding RNAs that control gene expression at the post-transcriptional level either via the degradation of target mRNAs or the inhibition of translation. Each miRNA controls the expression of multiple targets; miRNAs have been linked to regulation of lipid metabolism and inflammation. Methods:, We fed Lieber-DeCarli alcohol or methionine-choline-deficient (MCD) diets to C57Bl6 and analyzed livers for histopathology, cytokines by ELISA, alanine aminotransferase (ALT) by biochemical assay, and microRNA profile by microarray. Results:, Both Lieber-DeCarli and MCD diets lead to development of liver steatosis, liver injury, indicated by increased ALT, and elevated levels of serum TNF,, suggesting that animal models portray the pathophysiological features of alcoholic and nonalcoholic fatty liver, respectively. We identified that Lieber-deCarli diet up-regulated 1% and down-regulated 1% of known miRNA; MCD diet up-regulated 3% and down-regulated 1% of known miRNA, compared to controls. Of miRNAs that changed expression levels, 5 miRNAs were common in alcoholic and nonalcoholic fatty livers: the expression of both miR-705 and miR-1224 was increased after Lieber-DeCarli or MCD diet feeding. In contrast, miR-182, miR-183, and miR-199a-3p were down-regulated in Lieber-deCarli feeding, while MCD diet lead to their up-regulation, compared to corresponding controls. Conclusions:, Our findings indicate etiology-specific changes in miRNA expression profile during steatohepatitis models, which opens new avenues for research in the pathophysiology of alcoholic and nonalcoholic fatty liver disease. [source]


Fatty acid nutritional quality of sea urchin Paracentrotus lividus (Lamarck 1816) eggs and endotrophic larvae: relevance for feeding of marine larval fish

AQUACULTURE NUTRITION, Issue 4 2009
J.M. GAGO
Abstract Sea urchin eggs and larvae have been suggested as potential live prey for marine fish larval feeding. This study evaluated the fatty acid composition of Paracentrotus lividus eggs, prisms and four-armed plutei, obtained from wild and captive broodstocks fed on raw diets: maize, seaweed and a combination of maize and seaweed. Amounts of essential fatty acids (EFA) for marine fish larvae [arachidonic acid (ARA), eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA)] were determined in eggs and endotrophic larvae. ARA ranged from 3.93% in eggs from combination to 18.7% in plutei from maize diets. In any developmental stage, EPA amounts were always lower than 5% for the raw diets, and DHA showed null or trace amounts including the wild diet. Thus, broodstock-prepared diets had to be formulated based on different lipid sources (Algamac, linseed oil, cod liver oil and olive oil) in order to test eggs and larvae EFA enhancement. EFA improvement was possible for all tested prepared diets. Algamac diet lead to superior EFA enhancement mainly in DHA (7.24%, 4.92% and 6.09% for eggs, prisms and plutei, respectively) followed by cod liver oil diet. Only these two lipid sources should be considered for prepared broodstock diets in order to obtain suitable live prey for fish larval feeding. [source]


Role of orexin in the regulation of glucose homeostasis

ACTA PHYSIOLOGICA, Issue 3 2010
H. Tsuneki
Abstract Orexin-A (hypocretin-1) and orexin-B (hypocretin-2) are hypothalamic neuropeptides that play key roles in the regulation of wakefulness, feeding, reward, autonomic functions and energy homeostasis. To control these functions indispensable for survival, orexin-expressing neurones integrate peripheral metabolic signals, interact with many types of neurones in the brain and modulate their activities via the activation of orexin-1 receptor or orexin-2 receptor. In addition, a new functional role of orexin is emerging in the regulation of insulin and leptin sensitivities responsible for whole-body glucose metabolism. Recent evidence indicates that orexin efficiently protects against the development of peripheral insulin resistance induced by ageing or high-fat feeding in mice. In particular, the orexin receptor-2 signalling appears to confer resistance to diet-induced obesity and insulin insensitivity by improving leptin sensitivity. In fact, the expression of orexin gene is known to be down-regulated by hyperglycaemia in the rodent model of diabetes, such as ob/ob and db/db mice. Moreover, the levels of orexin receptor-2 mRNA have been shown to decline in the brain of mice along with ageing. These suggest that hyperglycaemia due to insulin insensitivity during ageing or by habitual consumption of a high-fat diet leads to the reduction in orexin expression in the hypothalamus, thereby further exacerbating peripheral insulin resistance. Therefore, orexin receptor controlling hypothalamic insulin/leptin actions may be a new target for possible future treatment of hyperglycaemia in patients with type 2 diabetes. [source]


Fibre-free diet leads to impairment of neuronally mediated muscle contractile response in rat distal colon

NEUROGASTROENTEROLOGY & MOTILITY, Issue 12 2006
R. Mitsui
Abstract, Dietary fibre consumption is known to be beneficial to increase stool bulk and frequency. In contrast, it is unclear whether chronic dietary fibre deficiency affects colonic motor functions, especially neuronally mediated muscle contractions. In this study, rats were fed a fibre-free diet or diet containing dietary fibre (cellulose or guar gum) for 27 days. Furthermore, neurogenic and myogenic contractions were evaluated in circular and longitudinal muscle strips of the distal colon. Additionally, the number of enterochromaffin (EC) cells, which play important roles in the initiation of the peristaltic reflex, was also examined by immunohistochemistry for serotonin. Myogenic contractions induced by carbachol or substance P were examined in the presence of tetrodotoxin. Circular muscle was hyposensitive to carbachol, but longitudinal muscle was hypersensitive to substance P in the fibre-free group. Nerve-mediated circular (5,20 Hz) and longitudinal (1,2 Hz) muscle contractions evoked by electrical field stimulation were attenuated in the fibre-free group and the latter response was almost abolished by atropine, suggesting functional changes of cholinergic neurons. EC cell number was decreased in the fibre-free group. In conclusion, changes in neurogenic and myogenic contractions and a decrease in EC cell number observed may affect colonic motility of the fibre-free group. [source]