Diene Terpolymer (diene + terpolymer)

Distribution by Scientific Domains


Selected Abstracts


Dynamic mechanical and thermal properties of PE-EPDM based jute fiber composites

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2008
Gautam Sarkhel
Abstract The present investigation deals with the mechanical, thermal and viscoelastic properties of ternary composites based on low density polyethylene (LDPE)-ethylene,propylene,diene terpolymer (EPDM) blend and high density polyethylene (HDPE)-EPDM blend reinforced with short jute fibers. For all the untreated and compatibilizer treated composites, the variation of mechanical and viscoelastic properties as a function of fiber loading (10, 20 and 30 wt %) and compatibilizer concentration (1, 2, and 3%) were evaluated. The flexural strength, flexural modulus, impact strength, and hardness increased with increasing both the fiber loading and the compatibilizer dose. The storage modulus (E,) and loss modulus (E,) of the HDPE-EPDM/jute fiber composites were recorded higher compared to those of the LDPE-EPDM/jute fiber composites at all level of fiber loading and compatibilizer doses. The tan, (damping efficiency) spectra showed a strong influence of the fiber loading and compatibilizer dose on the , relaxation process of polymer matrix in the composite. The thermo-oxidative stability was significantly enhanced for treated composites compared to untreated composites. Scanning electron microscopy investigation confirmed that the higher values of mechanical and viscoelastic properties of the treated composites compared to untreated composites is caused by improvement of fiber-matrix adhesion as result of compatibilizer treatment. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


Ethylene propylene diene terpolymer/ethylene vinyl acetate/layered silicate ternary nanocomposite by solution method

POLYMER ENGINEERING & SCIENCE, Issue 7 2006
H. Acharya
A new ternary nanocomposite has been developed using ethylene propylene diene terpolymer (EPDM), ethylene vinyl acetate (EVA-45) copolymer, and organically modified layered silicate (16 Me-MMT) from sodium montmorillonite (Na+ -MMT). Wide angle X-ray diffraction and transmission electron microscopic analysis confirmed the intercalation of the polymer chains in between the organosilicate layers and the nanoscale distribution of 16 Me-MMT in polymer matrix, respectively. The measurement of mechanical properties for 2,8 wt% of 16 Me-MMT loadings showed a significant increase in tensile strength, elongation at break, and modulus at different elongations. Such an improvement in mechanical properties has been correlated based on the fracture behavior of nanocomposite by SEM analysis. Thermal stability of EPDM/EVA/layered silicate ternary nanocomposites also showed substantial improvements compared with the neat EPDM/EVA blend, confirming thereby the formation of a high performance nanocomposite. POLYM. ENG. SCI., 46:437,843, 2006. © 2006 Society of Plastics Engineers [source]


Effects of particle size of Al(OH)3 on electrical properties of EPDM compounds

POLYMER ENGINEERING & SCIENCE, Issue 4 2000
Cheol Ho Lee
Effects of particle size of Al(OH)3 (ATH) filler on electrical properties of ethylene propylene diene terpolymer (EPDM)/ATH compounds were studied. It was found that tracking and erosion resistance of EPDM/ATH compounds decreased while dielectric properties and 90°C water resistance were improved with the increase of particle size. Homocharge accumulates in the compounds, which increases first and then decreases with the increase of particle size. This was explained by the change of particle-to-particle distance due to filler size. [source]


Influence of the rubbery phase on the crystallinity and thermomechanical properties of poly(3-hydroxybutyrate)/elastomer blends

POLYMER INTERNATIONAL, Issue 6 2010
Patrícia S Calvão
Abstract Poly(3-hydroxybutyrate) (PHB) is a very promising biopolymer. In order to improve its processability and decrease its brittleness, PHB/elastomer blends can be prepared. In the work reported, the effect of the addition of a rubbery phase, i.e. ethylene,propylene,diene terpolymer (EPDM) or poly(vinyl butyral) (PVB), on the properties of PHB was studied. The effects of rubber type and of changing the PHB/elastomer blend processing method on the crystallinity and physical properties of the blends were also investigated. For blends based on PHB, the main role of EPDM is its nucleating effect evidenced by a decrease of crystallization temperature and an increase of crystallinity with increasing EPDM content regardless of the processing route. While EPDM has a weak effect on PHB glass transition temperature, PVB induces a marked decrease of this temperature thank to its plasticizer that swells the PHB amorphous phase. A promising solution to improve the mechanical properties of PHB seems to be the melt-processing of PHB with both plasticizer and EPDM. In fact, the plasticizer is more efficient than the elastomer in decreasing the PHB glass transition temperature and, because of the nucleating effect of EPDM, the decrease of the PHB modulus due to the plasticizer can be counterbalanced. Copyright © 2010 Society of Chemical Industry [source]