Diel Cycle (diel + cycle)

Distribution by Scientific Domains


Selected Abstracts


Diel variation in surface and subsurface microbial activity along a gradient of drying in an Australian sand-bed stream

FRESHWATER BIOLOGY, Issue 10 2003
Cecile Claret
Summary 1. Microbes play key roles in nutrient transformation and organic matter mineralisation in the hyporheic zone but their short-term responses to diel variations in discharge and temperature are unknown. Rates of microbial esterase activity were hypothesised to vary vertically and along a gradient of moisture in a drying sand-bed stream where discharge fluctuated daily in response to evapotranspiration. 2. At ,fully saturated', ,moist' and ,dry' locations in three sites along a drying Australian sand-bed stream, microbial activity at three depths (surface, 10 and 30 cm) was assessed using fluorescein diacetate hydrolysis. Samples were collected in mid-summer in the late afternoon and again at dawn to assess diel variation in hydrolytic activity at each site and depth. Data loggers tracked diel variations in temperature at each depth. 3. Hydrolytic activity was up to 10-fold greater in the surface sediments in late afternoon than at dawn in all habitats, and was correlated with surface sediment temperature. Diel differences in activity were not detected at 10 cm, although daily thermal cycles were evident at this depth. Unexpectedly, activity was marginally higher at dawn at 30 cm in all habitats, perhaps reflecting lags in temperature at that depth. 4. Overall, microbial activity declined with depth, strongly correlated with vertical trends in total organic matter and concentrations of dissolved phosphorus. Particulate organic matter, probably buried during a flood 35 days earlier, appeared largely responsible for these vertical trends. On the other hand, there was little evidence for hydrological exchange between much of the hyporheic zone and the surface stream, implying that processes in the subsurface zone of this stream are effectively isolated during baseflow in mid-summer. 5. Diel cycles of wetting and drying in the moist habitats did not enhance esterase activity relative to the dry or fully saturated habitats. Sediment moisture was not correlated with microbial activity, and mats of senescent algae appeared to inhibit water loss from surface sediments in the moist habitat. In this sand-bed stream, local diel fluctuations in water level appear to have less influence on microbial activity and mineralisation of organic matter in the sediments than occasional floods that bury leaf litter and renew many hyporheic zone functions. Subreach-scale processes seem to be the major driving force of microbial processes and nutrient cycling in this sand-bed river. [source]


Diel rhythm of nitrogen and carbon metabolism in the unicellular, diazotrophic cyanobacterium Crocosphaera watsonii WH8501

ENVIRONMENTAL MICROBIOLOGY, Issue 2 2010
Wiebke Mohr
Summary We examined the diel variation in nitrogen and carbon metabolism in Crocosphaera watsonii WH8501 at the physiological and gene expression level in order to determine the temporal constraints for N2 fixation and photosynthesis. N2 fixation and photosynthesis were restricted to the dark and light periods, respectively, during a 24 h light,dark cycle. All genes studied here except one (psbA2) showed diel variations in their expression levels. The highest variation was seen in nifH and nifX relative transcript abundance with a factor of 3,5 × 103 between light and dark periods. Photosynthesis genes showed less variation with a maximum factor of about 500 and always had high relative transcript abundances relative to other genes. At the protein level, the photosystems appeared more stable than the nitrogenase complex over a 24 h light,dark cycle, suggesting that C. watsonii retains the ability to photosynthesize during the dark period of the diel cycle. In contrast, nitrogenase is synthesized daily and exhibits peak abundance during the dark period. Our results have implications for field studies with respect to the interpretation of environmental gene expression data. [source]


The role of macroinvertebrates and fish in regulating the provision by macrophytes of refugia for zooplankton in a warm temperate shallow lake

FRESHWATER BIOLOGY, Issue 10 2010
MARÍA de los ÁNGELES GONZÁLEZ SAGRARIO
Summary 1.,The zooplankton often undergoes diel horizontal migration (DHM) from the open water to the littoral of shallow lakes, thus avoiding predators in the former. This behaviour has functional impacts within the lake, as it enhances zooplankton survival, increases their control of phytoplankton and tends to stabilise the clear water state. However, most of the evidence supporting this migration pattern comes from cold north temperate lakes, and more evidence from tropical and subtropical areas, as well as from southern temperate areas, is needed. 2.,We conducted a field study of the diel horizontal and vertical migration of zooplankton, and the horizontal distribution of potential predatory macroinvertebrates and fish, over two consecutive days in the summer in a temperate lake in the southern hemisphere. We took zooplankton samples at two depths, at three sampling stations (inside beds of aquatic macrophytes, at their edge and in open water) along three transects running from the centre of a bed of Ceratophyllum demersum to open water. At each sampling station, we also took samples of macroinvertebrates and fish and measured physical and chemical environmental variables. 3.,Zooplankton (pelagic cladocerans, calanoid copepods and rotifers) avoided the shore, probably because of the greater risk from predators there. Larger and more vulnerable cladocerans, such as Diaphanosoma brachyurum and Moina micrura, were two to four times more abundant in open water than at the edge of or inside beds of macrophytes, respectively, by both day and night. Less vulnerable zooplankton [i.e. of medium body size (Ceriodaphnia dubia) or with the ability to swim fast (calanoid copepods)] were distributed evenly between open water and the edge of the plant beds. Small zooplankton, Bosmina huaronensis and pelagic rotifers, showed an even distribution among the three sampling stations. Accordingly, no DHM of zooplankton occurred, although larger organisms migrated vertically inside C. demersum stands. 4.,Macrophytes contained high densities of predatory macroinvertebrates and fish. The predator assemblage, composed of large-bodied macroinvertebrates (including odonates and shrimps) and small littoral fish, was permanently associated with submerged macrophytes. None of these groups moved outside the plant beds or changed their population structure (fish) over the diel cycle. 5.,Submerged macrophyte beds do not represent a refuge for zooplankton in lakes where predators are numerous among the plants, implying a weaker top-down control of phytoplankton biomass by zooplankton and, consequently, a more turbid lake. The effectiveness of macrophytes as a refuge for zooplankton depends on the associated assemblage of predatory macroinvertebrates and fish among the plants. [source]


Soil moisture dynamics in an eastern Amazonian tropical forest

HYDROLOGICAL PROCESSES, Issue 12 2006
Rogério D. Bruno
Abstract We used frequency-domain reflectometry to make continuous, high-resolution measurements for 22 months of the soil moisture to a depth of 10 m in an Amazonian rain forest. We then used these data to determine how soil moisture varies on diel, seasonal and multi-year timescales, and to better understand the quantitative and mechanistic relationships between soil moisture and forest evapotranspiration. The mean annual precipitation at the site was over 1900 mm. The field capacity was approximately 0·53 m3 m,3 and was nearly uniform with soil depth. Soil moisture decreased at all levels during the dry season, with the minimum of 0·38 m3 m,3 at 3 m beneath the surface. The moisture in the upper 1 m showed a strong diel cycle with daytime depletion due to evapotranspiration. The moisture beneath 1 m declined during both day and night due to the combined effects of evapotranspiration, drainage and a nighttime upward movement of water. The depth of active water withdrawal changed markedly over the year. The upper 2 m of soil supplied ,56% of the water used for evapotranspiration in the wet season and ,28% of the water used in the dry season. The zone of active water withdrawal extended to a depth of at least 10 m. The day-to-day rates of moisture withdrawal from the upper 10 m of soil during rain-free periods agreed well with simultaneous measurements of whole-forest evapotranspiration made by the eddy covariance technique. The forest at the site was well adapted to the normal cycle of wet and dry seasons, and the dry season had only a small effect on the rates of land,atmosphere water vapour exchange. Copyright © 2006 John Wiley & Sons, Ltd. [source]


The zone of vegetation influence on baseflow revealed by diel patterns of streamflow and vegetation water use in a headwater basin

HYDROLOGICAL PROCESSES, Issue 8 2002
Barbara J. Bond
Water use by vegetation can be closely linked to streamflow patterns on a variety of time scales. However, many of the details of these linkages are poorly understood. We compared diel (24 h) patterns of transpirational water use with streamflow patterns in a small headwater basin that displays a marked diel variation during summer months. The study site was in western Oregon. Our objectives were to: (1) determine the phase shift, i.e. the time lag between maximum transpiration and minimum streamflow, and the strength of the correlation at that time lag; (2) determine the amount of streamflow that is ,missing' during each diel cycle (i.e. the difference between base flow, defined by the daily maxima, and actual flow) and use it to estimate the zone, or area, of vegetation that influences daily streamflow patterns; (3) test and refine a conceptual model of how the coupling between vegetation water use and streamflow changes over the period of summer drought in this basin. We found that vegetation water use in the summer is coupled to streamflow over time scales of 4 to 8 h, and water-use-related fluctuations accounted for 1 to 6% of summer base flow. Direct evaporation from the channel was an order of magnitude less than the diel streamflow decrease. Transpiration within only 0·1 to 0·3% of the basin area accounted for the diel variation in streamflow. As the basin drained further through the summer, the coupling between vegetation and streamflow was diminished and occurred at longer time scales, and the zone of vegetation influence became smaller. This pattern is in accordance with our conceptual model, which attributes the summer decline in the strength of the vegetation,streamflow coupling to the increasing depth of plant-available water in the soil profile. Although this study is preliminary, we believe it is an important first step in describing better the coupling of vegetation water use to streamflow. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Do larval fishes exhibit diel drift patterns in a large, turbid river?

JOURNAL OF APPLIED ICHTHYOLOGY, Issue 4 2010
K. S. Reeves
Summary Previous research suggested larval fishes do not exhibit a diel drift cycle in turbid rivers (transparency <30 cm). We evaluated this hypothesis in the turbid, lower Missouri River, Missouri. We also reviewed diel patterns of larval drift over a range of transparencies in rivers worldwide. Larval fishes were collected from the Missouri River primary channel every 4 h per 24-h period during spring-summer 2002. Water transparency was measured during this period and summarized for previous years. Diel drift patterns were analyzed at the assemblage level and lower taxonomic levels for abundant groups. Day and night larval fish catch-per-unit-effort (CPUE) was compared for the entire May through August sampling period and spring (May , June) and summer (July , August) seasons separately. There were no significant differences between day and night CPUE at the assemblage level for the entire sampling period or for the spring and summer seasons. However, Hiodon alosoides, Carpiodes/Ictiobus spp. and Macrhybopsis spp. exhibited a diel cycle of abundance within the drift. This pattern was evident although mean Secchi depth (transparency) ranged from 4 to 25 cm during the study and was <30 cm from May through August over the previous nine years. Larval diel drift studies from 48 rivers excluding the Missouri River indicated the primary drift period for larval fishes was at night in 38 rivers and during the day for five, with the remaining rivers showing no pattern. Water transparency was reported for 10 rivers with six being <30 cm or ,low'. Two of these six turbid rivers exhibited significant diel drift patterns. The effect of water transparency on diel drift of larval fishes appears taxa-specific and patterns of abundant taxa could mask patterns of rare taxa when analyzed only at the assemblage level. [source]


DIEL VARIATIONS IN OPTICAL PROPERTIES OF MICROMONAS PUSILLA (PRASINOPHYCEAE),

JOURNAL OF PHYCOLOGY, Issue 6 2002
Michele D. DuRand
Micromonas pusilla (Butcher) Manton et Parke, a marine prasinophyte, was used to investigate how cell growth and division affect optical properties of phytoplankton over the light:dark cycle. Measurements were made of cell size and concentration, attenuation and absorption coefficients, flow cytometric forward and side light scattering and chl fluorescence, and chl and carbon content. The refractive index was derived from observations and Mie scattering theory. Diel variations occurred, with cells increasing in size, light scattering, and carbon content during daytime photosynthesis and decreasing during nighttime division. Cells averaged 1.6 ,m in diameter and exhibited phased division, with 1.3 divisions per day. Scattering changes resulted primarily from changes in cell size and not refractive index; absorption changes were consistent with a negligible package effect. Measurements over the diel cycle suggest that in M. pusilla carbon-specific attenuation varies with cell size, and this relationship appears to extend to other phytoplankton species. Because M. pusilla is one of the smallest eukaryotic phytoplankton and belongs to a common marine genus, these results will be useful for interpreting in situ light scattering variation. The relationship between forward light scattering (FLS) and volume over the diel cycle for M. pusilla was similar to that determined for a variety of phytoplankton species over a large size range. We propose a method to estimate cellular carbon content directly from FLS, which will improve our estimates of the contribution of different phytoplankton groups to productivity and total carbon content in the oceans. [source]


Modelling advection and diffusion of water isotopologues in leaves

PLANT CELL & ENVIRONMENT, Issue 8 2007
MATTHIAS CUNTZ
ABSTRACT We described advection and diffusion of water isotopologues in leaves in the non-steady state, applied specifically to amphistomatous leaves. This explains the isotopic enrichment of leaf water from the xylem to the mesophyll, and we showed how it relates to earlier models of leaf water enrichment in non-steady state. The effective length or tortuosity factor of isotopologue movement in leaves is unknown and, therefore, is a fitted parameter in the model. We compared the advection,diffusion model to previously published data sets for Lupinus angustifolius and Eucalyptus globulus. Night-time stomatal conductance was not measured in either data set and is therefore another fitted parameter. The model compared very well with the observations of bulk mesophyll water during the whole diel cycle. It compared well with the enrichment at the evaporative sites during the day but showed some deviations at night for E. globulus. It became clear from our analysis that night-time stomatal conductance should be measured in the future and that the temperature dependence of the tracer diffusivities should be accounted for. However, varying mesophyll water volume did not seem critical for obtaining a good prediction of leaf water enrichment, at least in our data sets. In addition, observations of single diurnal cycles do not seem to constrain the effective length that relates to the tortuosity of the water path in the mesophyll. Finally, we showed when simpler models of leaf water enrichment were suitable for applications of leaf water isotopes once weighted with the appropriate gas exchange flux. We showed that taking an unsuitable leaf water enrichment model could lead to large biases when cumulated over only 1 day. [source]


DOES VIVIPARITY EVOLVE IN COLD CLIMATE REPTILES BECAUSE PREGNANT FEMALES MAINTAIN STABLE (NOT HIGH) BODY TEMPERATURES?

EVOLUTION, Issue 8 2004
Richard Shine
Abstract Viviparity (live bearing) has evolved from egg laying (oviparity) in many lineages of lizards and snakes, apparently in response to occupancy of cold climates. Explanations for this pattern have focused on the idea that behaviorally thermoregulating (sun-basking) pregnant female reptiles can maintain higher incubation temperatures for their embryos than would be available in nests under the soil surface. This is certainly true at very high elevations, where only viviparous species occur. However, comparisons of nest and lizard temperatures at sites close to the upper elevational limit for oviparous reptiles (presumably, the selective environment where the transition from oviparity to viviparity actually occurs) suggest that reproductive mode has less effect on mean incubation temperatures than on the diel distribution of those temperatures. Nests of the oviparous scincid lizard Bassiana duperreyi showed smooth diel cycles of heating and cooling. In contrast, body temperatures of the viviparous scincid Eulamprus heatwolei rose abruptly in the morning, were high and stable during daylight hours, and fell abruptly at night. Laboratory incubation experiments mimicking these patterns showed that developmental rates of eggs and phenotypic traits of hatchling B. duperreyi were sensitive to this type of thermal variance as well as to mean temperature. Hence, diel distributions as well as mean incubation temperatures may have played an important role in the selective forces for viviparity. More generally, variances as well as mean values of abiotic factors may constitute significant selective forces on life-history evolution. [source]