Home About us Contact | |||
Diagnostic Plots (diagnostic + plot)
Selected AbstractsMultiple-Imputation-Based Residuals and Diagnostic Plots for Joint Models of Longitudinal and Survival OutcomesBIOMETRICS, Issue 1 2010Dimitris Rizopoulos Summary The majority of the statistical literature for the joint modeling of longitudinal and time-to-event data has focused on the development of models that aim at capturing specific aspects of the motivating case studies. However, little attention has been given to the development of diagnostic and model-assessment tools. The main difficulty in using standard model diagnostics in joint models is the nonrandom dropout in the longitudinal outcome caused by the occurrence of events. In particular, the reference distribution of statistics, such as the residuals, in missing data settings is not directly available and complex calculations are required to derive it. In this article, we propose a multiple-imputation-based approach for creating multiple versions of the completed data set under the assumed joint model. Residuals and diagnostic plots for the complete data model can then be calculated based on these imputed data sets. Our proposals are exemplified using two real data sets. [source] Robust methods for partial least squares regressionJOURNAL OF CHEMOMETRICS, Issue 10 2003M. Hubert Abstract Partial least squares regression (PLSR) is a linear regression technique developed to deal with high-dimensional regressors and one or several response variables. In this paper we introduce robustified versions of the SIMPLS algorithm, this being the leading PLSR algorithm because of its speed and efficiency. Because SIMPLS is based on the empirical cross-covariance matrix between the response variables and the regressors and on linear least squares regression, the results are affected by abnormal observations in the data set. Two robust methods, RSIMCD and RSIMPLS, are constructed from a robust covariance matrix for high-dimensional data and robust linear regression. We introduce robust RMSECV and RMSEP values for model calibration and model validation. Diagnostic plots are constructed to visualize and classify the outliers. Several simulation results and the analysis of real data sets show the effectiveness and robustness of the new approaches. Because RSIMPLS is roughly twice as fast as RSIMCD, it stands out as the overall best method. Copyright © 2003 John Wiley & Sons, Ltd. [source] Bayesian measures of model complexity and fitJOURNAL OF THE ROYAL STATISTICAL SOCIETY: SERIES B (STATISTICAL METHODOLOGY), Issue 4 2002David J. Spiegelhalter Summary. We consider the problem of comparing complex hierarchical models in which the number of parameters is not clearly defined. Using an information theoretic argument we derive a measure pD for the effective number of parameters in a model as the difference between the posterior mean of the deviance and the deviance at the posterior means of the parameters of interest. In general pD approximately corresponds to the trace of the product of Fisher's information and the posterior covariance, which in normal models is the trace of the ,hat' matrix projecting observations onto fitted values. Its properties in exponential families are explored. The posterior mean deviance is suggested as a Bayesian measure of fit or adequacy, and the contributions of individual observations to the fit and complexity can give rise to a diagnostic plot of deviance residuals against leverages. Adding pD to the posterior mean deviance gives a deviance information criterion for comparing models, which is related to other information criteria and has an approximate decision theoretic justification. The procedure is illustrated in some examples, and comparisons are drawn with alternative Bayesian and classical proposals. Throughout it is emphasized that the quantities required are trivial to compute in a Markov chain Monte Carlo analysis. [source] A robust PCR method for high-dimensional regressorsJOURNAL OF CHEMOMETRICS, Issue 8-9 2003Mia Hubert Abstract We consider the multivariate calibration model which assumes that the concentrations of several constituents of a sample are linearly related to its spectrum. Principal component regression (PCR) is widely used for the estimation of the regression parameters in this model. In the classical approach it combines principal component analysis (PCA) on the regressors with least squares regression. However, both stages yield very unreliable results when the data set contains outlying observations. We present a robust PCR (RPCR) method which also consists of two parts. First we apply a robust PCA method for high-dimensional data on the regressors, then we regress the response variables on the scores using a robust regression method. A robust RMSECV value and a robust R2 value are proposed as exploratory tools to select the number of principal components. The prediction error is also estimated in a robust way. Moreover, we introduce several diagnostic plots which are helpful to visualize and classify the outliers. The robustness of RPCR is demonstrated through simulations and the analysis of a real data set. Copyright © 2003 John Wiley & Sons, Ltd. [source] Residual analysis for spatial point processes (with discussion)JOURNAL OF THE ROYAL STATISTICAL SOCIETY: SERIES B (STATISTICAL METHODOLOGY), Issue 5 2005A. Baddeley Summary., We define residuals for point process models fitted to spatial point pattern data, and we propose diagnostic plots based on them. The residuals apply to any point process model that has a conditional intensity; the model may exhibit spatial heterogeneity, interpoint interaction and dependence on spatial covariates. Some existing ad hoc methods for model checking (quadrat counts, scan statistic, kernel smoothed intensity and Berman's diagnostic) are recovered as special cases. Diagnostic tools are developed systematically, by using an analogy between our spatial residuals and the usual residuals for (non-spatial) generalized linear models. The conditional intensity , plays the role of the mean response. This makes it possible to adapt existing knowledge about model validation for generalized linear models to the spatial point process context, giving recommendations for diagnostic plots. A plot of smoothed residuals against spatial location, or against a spatial covariate, is effective in diagnosing spatial trend or co-variate effects. Q,Q -plots of the residuals are effective in diagnosing interpoint interaction. [source] A GRAPHICAL DIAGNOSTIC FOR VARIANCE FUNCTIONSAUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, Issue 3 2007Iain Pardoe Summary This paper proposes diagnostic plots for regression variance functions. It shows how to extend graphical methodology that uses Bayesian sampling for checking the regression mean function to also check the variance function. Plots can be constructed quickly and easily for any model of interest. These plots help to identify model weaknesses and can suggest ways to make improvements. The proposed methodology is illustrated with two examples: a simple linear regression model to fix ideas, and a more complex study involving count data to demonstrate the potential for wide application. [source] Multiple-Imputation-Based Residuals and Diagnostic Plots for Joint Models of Longitudinal and Survival OutcomesBIOMETRICS, Issue 1 2010Dimitris Rizopoulos Summary The majority of the statistical literature for the joint modeling of longitudinal and time-to-event data has focused on the development of models that aim at capturing specific aspects of the motivating case studies. However, little attention has been given to the development of diagnostic and model-assessment tools. The main difficulty in using standard model diagnostics in joint models is the nonrandom dropout in the longitudinal outcome caused by the occurrence of events. In particular, the reference distribution of statistics, such as the residuals, in missing data settings is not directly available and complex calculations are required to derive it. In this article, we propose a multiple-imputation-based approach for creating multiple versions of the completed data set under the assumed joint model. Residuals and diagnostic plots for the complete data model can then be calculated based on these imputed data sets. Our proposals are exemplified using two real data sets. [source] |