Home About us Contact | |||
Diagnostic Analyses (diagnostic + analysis)
Selected AbstractsThe dynamics of NAO teleconnection pattern growth and decayTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 589 2003Steven B. Feldstein Abstract This investigation performs both diagnostic analyses with NCEP/NCAR re-analysis data and forced, barotropic model calculations to examine the dynamical mechanisms associated with the growth and decay of the North Atlantic Oscillation (NAO) teleconnection pattern. The diagnostic calculations include projection and composite analyses of each term in the stream-function-tendency equation. The results of the analyses reveal a complete life cycle of growth and decay within approximately two weeks. The positive NAO phase is found to develop after anomalous wavetrain propagation across the North Pacific to the east coast of North America. This contrasts with the negative NAO phase which appeared to develop in situ. Both high-frequency (period <10 days) and low-frequency (period >10 days) transient eddy fluxes drive the NAO growth. After the NAO anomaly attains its maximum amplitude, the high-frequency transient eddy fluxes continue to drive the NAO anomaly in a manner that is consistent with a positive feedback process. The decay of the NAO occurs through both the divergence term and the low-frequency transient eddy fluxes. The temporal and spatial properties of the divergence term are found to be consistent with Ekman pumping. These results illustrate many important differences between the NAO and Pacific/North American (PNA) teleconnection patterns, perhaps most striking being that the NAO life cycle is dominated by nonlinear processes, whereas the PNA evolution is primarily linear, In addition, the relation between the NAO and the zonal index is discussed. Copyright © 2003 Royal Meteorological Society [source] Fundamental mechanisms of the growth and decay of the PNA teleconnection patternTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 581 2002Steven B. Feldstein Abstract This investigation performs diagnostic analyses on NCEP/NCAR re-analysis data, and also does forced, nonlinear, barotropic model calculations to examine the dynamical mechanisms associated with the growth and decay of the Pacific/North American teleconnection pattern (PNA). The diagnostic calculations include projection and composite analyses of each term in the stream-function-tendency equation. The results of the diagnostic analyses and model calculations reveal a PNA life cycle that is complete within approximately 2 weeks and is dominated by linear processes. The growth of the two upstream PNA anomaly centres is found to be by barotropic conversion from the zonally asymmetric climatological flow, and the two downstream PNA anomaly centres by linear dispersion. The PNA anomaly growth eventually ceases because of changes in the spatial structure of the anomaly. An analysis of the role of Ekman pumping is performed with a very simple model. The results, although qualitative, suggest that the decay of the PNA may be through Ekman pumping. An examination of the role of transient eddy vorticity fluxes indicates that they play an important role during some stages of the PNA life cycle. Lastly, the model calculations also reveal a crucial role played by the divergence term in maintaining the PNA anomaly in a quasi-fixed position. Copyright © 2002 Royal Meteorological Society. [source] Wavelet analysis and the governing dynamics of a large-amplitude mesoscale gravity-wave event along the East Coast of the United StatesTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 577 2001Fuqing Zhang Abstract Detailed diagnostic analyses are performed upon a mesoscale numerical simulation of a well-observed gravity-wave event that occurred on 4 January 1994 along the East Coast of the United States. The value of using wavelet analysis to investigate the evolving gravity-wave structure and of using potential vorticity (PV) inversion to study the nature of the flow imbalance in the wave generation region is demonstrated. The cross-stream Lagrangian Rossby number, the residual in the nonlinear balance equation, and the unbalanced geopotential-height field obtained from PV inversion are each evaluated for their usefulness in diagnosing the flow imbalance. All of these fields showed clear evidence of strong imbalance associated with a middle-to-upper tropospheric jet streak, and tropopause fold upstream of the large-amplitude gravity wave several hours before the wave became apparent at the surface. Analysis indicates that a train of gravity waves was continuously generated by geostrophic adjustment in the exit region of the unbalanced upper-level jet streak as it approached the inflection axis in the height field immediately downstream of the maximum imbalance associated with the tropopause fold. A split front in the middle troposphere, characterized by the advance of the dry conveyor belt above the warm front, was overtaken by one of these propagating waves. During this merger process, a resonant interaction resulted, which promoted the rapid amplification and scale contraction of both the incipient wave (nonlinear wave development) and the split front (frontogenesis). The gravity wave and front aloft became inseparable following this merger. The situation became even more complex within a few hours as the vertical motion enhanced by this front-wave interaction acted upon a saturated, potentially unstable layer to produce elevated moist convection. An analysis of the temporal changes in the vertical profile of wave energy flux suggests that moist convective downdraughts efficiently transported the wave energy from the midlevels downward beneath the warm-front surface, where the wave became ducted. However, pure ducting was not sufficient for maintaining and amplifying the waves; rather, wave-CISK (Conditional Instability of the Second Kind) was crucial. This complex sequence of nonlinear interactions produced a long-lived, large-amplitude gravity wave that created hazardous winter weather and disrupted society over a broad and highly populated area. Although gravity waves with similar appearance to this large-amplitude wave of depression occasionally have been seen in other strong cyclogenesis cases involving a jet streak ahead of the upper-level trough axis, it is unknown whether other such events share this same sequence of interactions. [source] Assessment of the swine protein-annotated oligonucleotide microarrayANIMAL GENETICS, Issue 6 2009J. P. Steibel Summary The specificity and utility of the swine protein-annotated oligonucleotide microarray, or Pigoligoarray (http://www.pigoligoarray.org), has been evaluated by profiling the expression of transcripts from four porcine tissues. Tools for comparative analyses of expression on the Pigoligoarray were developed including HGNC identities and comparative mapping alignments with human orthologs. Hybridization results based on the Pigoligoarray's sets of control, perfect match (PM) and deliberate mismatch (MM) probes provide an important means of assessing non-specific hybridization. Simple descriptive diagnostic analyses of PM/MM probe sets are introduced in this paper as useful tools for detecting non-specific hybridization. Samples of RNA from liver, brain stem, longissimus dorsi muscle and uterine endothelium from four pigs were prepared and hybridized to the arrays. Of the total 20 400 oligonucleotides on the Pigoligoarray, 12 429 transcripts were putatively differentially expressed (DE). Analyses for tissue-specific expression [over-expressed in one tissue with respect to all the remaining three tissues (q < 0.01)] identified 958 DE transcripts in liver, 726 in muscle, 286 in uterine endothelium and 1027 in brain stem. These hybridization results were confirmed by quantitative PCR (QPCR) expression patterns for a subset of genes after affirming that cDNA and amplified antisense RNA (aRNA) exhibited similar QPCR results. Comparison to human ortholog expression confirmed the value of this array for experiments of both agricultural importance and for tests using pigs as a biomedical model for human disease. [source] Quantitative analysis of immunoglobulin E reactivity profiles in patients allergic or sensitized to natural rubber latex (Hevea brasiliensis)CLINICAL & EXPERIMENTAL ALLERGY, Issue 11 2007M. Raulf-Heimsoth Summary Background Characterized native and recombinant Hevea brasiliensis (rHev b) natural rubber latex (NRL) allergens are available to assess patient allergen sensitization profiles. Objective Quantification of individual IgE responses to the spectrum of documented NRL allergens and evaluation of cross-reactive carbohydrate determinants (CCDs) for more definitive diagnosis. Methods Sera of 104 healthcare workers (HCW; 51 German, 21 Portuguese, 32 American), 31 spina bifida patients (SB; 11 German, 20 Portuguese) and 10 Portuguese with multiple surgeries (MS) were analysed for allergen-specific IgE antibody (sIgE) to NRL, single Hev b allergens and CCDs with ImmunoCAPÔ technology. Results In all patient groups rHev b 5-sIgE concentrations were the most pronounced. Hev b 2, 5, 6.01 and 13 were identified as the major allergens in HCW and combined with Hev b 1 and Hev b 3 in SB. In MS Hev b 1 displayed an intermediate relevance. Different sIgE antibody levels to native Hevea brasiliensis (nHev b) 2 and rHev b 6.01 allowed discrimination of SB with clinical relevant latex allergy vs. those with latex sensitization. Sensitization profiles of German, Portuguese and American patients were equivalent. rHev b 5, 6.01 and nHev b 13 combined detected 100% of the latex-allergic HCW and 80.1% of the SB. Only 8.3% of the sera showed sIgE response to CCDs. Conclusions Hev b 1, 2, 5, 6.01 and 13 were identified as the major Hev b allergens and they should be present in standardized latex extracts and in vitro allergosorbents. CCDs are only of minor relevance in patients with clinical relevant latex allergy. Component-resolved diagnostic analyses for latex allergy set the stage for an allergen-directed immunotherapy strategy. [source] Genetic heterogeneity and minor CYP1B1 involvement in the molecular basis of primary congenital glaucoma in GypsiesCLINICAL GENETICS, Issue 1 2008P Sivadorai Primary congenital glaucoma (PCG) is a genetically heterogeneous disorder of autosomal recessive inheritance, with mutations in the cytochrome P450 1B1 (CYP1B1) gene detected in an average of ,50% of cases worldwide. The Roma/Gypsies are considered to be a rare example of a single founder CYP1B1 mutation, E387K (identified in the Slovak Roma), accounting for 100% of disease alleles. Contrary to this concept, unusual genetic heterogeneity was revealed in this study of 21 Gypsy PCG patients from Bulgaria and 715 controls from the general Gypsy population. In our small sample of affected subjects, we identified five different CYP1B1 mutations , four known (E229K, R368H, E387K and R390C) and one novel and potentially pathogenic (F445I), which together accounted for ,30% of disease alleles. E387K was rare in both the patient and the control group, indicating that its high frequency in the Slovak Roma is the product of local founder effect not representative of the overall molecular pattern of PCG in the Gypsy population. Data on other Mendelian disorders and on the population genetics of the Gypsies suggest that a true founder mutation is likely to exist and has remained undetected. Our analysis of another candidate gene, MYOC, and the GLC3B and GLC3C loci did not provide support for their involvement. The molecular basis of PCG in the Gypsies is thus unresolved, and diagnostic analyses should be extended beyond the E387K mutation. [source] Salivary gland parameters and clinical data related to the underlying disorder in patients with persisting xerostomiaEUROPEAN JOURNAL OF ORAL SCIENCES, Issue 2 2007Ianthe Van Den Berg This study assessed salivary gland parameters and clinical data in patients referred to our clinic because of persisting xerostomia of unknown origin, in order to facilitate early diagnosis and recognition of the underlying disorder. Most patients were referred for diagnostic analysis of a possible Sjögren's syndrome (SS). A complete diagnostic work-up was available in all patients (n = 176), including data on salivary gland function, saliva composition, sialography, salivary gland swelling, pattern of complaints, general health, and medication. Patients were diagnosed with SS (n = 62), sialosis (n = 45), sodium retention syndrome (n = 30), or medication-induced xerostomia (n = 9). In 30 patients no disease related to salivary gland pathology was found. Unstimulated whole salivary flow was decreased in all patients, except in patients with sodium retention syndrome and in patients without salivary gland pathology. Submandibular/sublingual salivary flow was lowest in SS patients. SS and sialosis patients had increased salivary potassium concentrations, whereas only SS patients had increased sodium concentrations. About half of the sialosis patients mainly complained of persistent parotid gland swelling. Xerostomia-inducing medication was used by most patients. It was concluded that gland-specific sialometry and sialochemistry is useful in discriminating between the various disorders causing persisting xerostomia. [source] Severe Deep Moist Convective Storms: Forecasting and MitigationGEOGRAPHY COMPASS (ELECTRONIC), Issue 1 2008David L. Arnold Small-scale (2,20 km) circulations, termed ,severe deep moist convective storms', account for a disproportionate share of the world's insured weather-related losses. Spatial frequency maximums of severe convective events occur in South Africa, India, Mexico, the Caucasus, and Great Plains/Prairies region of North America, where the maximum tornado frequency occurs east of the Rocky Mountains. Interest in forecasting severe deep moist convective systems, especially those that produce tornadoes, dates to 1884 when tornado alerts were first provided in the central United States. Modern thunderstorm and tornado forecasting relies on technology and theory, but in the post-World War II era interest in forecasting has also been driven by public pressure. The forecasting process begins with a diagnostic analysis, in which the forecaster considers the potential of the atmospheric environment to produce severe convective storms (which requires knowledge of the evolving kinematic and thermodynamic fields, and the character of the land surface over which the storms will pass), and the likely character of the storms that may develop. Improvements in forecasting will likely depend on technological advancements, such as the development of phased-array radar systems and finer resolution numerical weather prediction models. Once initiated, the evolution of deep convective storms is monitored by satellite and radar. Mitigation of the hazards posed by severe deep moist convective storms is a three-step process, involving preparedness, response, and recovery. Preparedness implies that risks have been identified and organizations and individuals are familiar with a response plan. Response necessitates that potential events are identified before they occur and the developing threat is communicated to the public. Recovery is a function of the awareness of local, regional, and even national governments to the character and magnitude of potential events in specific locations, and whether or not long-term operational plans are in place at the time of disasters. [source] FASTEX IOP 18: A very deep tropopause fold.THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 577 2001I: Synoptic description, modelling Abstract The life cycle of a very deep tropopause fold (820 hPa) is documented with aircraft and ship observations during the Intensive Observing Period 18 of the Fronts and Atlantic Storm-Track EXperiment (FASTEX). The initial setting involves a coherent tropopause disturbance and an associated Arctic tropopause fold. The confluence episode that results from the phasing up of the tropopause disturbance and a southern ridge, ends in the formation of an intense jet streak, the dynamics of which are associated with the development of a polar tropopause fold. A diagnostic analysis suggests that the final dramatic stratospheric intrusion is the consequence of the vertical superposition of the Arctic and polar tropopause folds. The Mesoscale Non-Hydrostatic (Meso-NH) model is used to discuss this hypothesis. Mixing of the passive stratospheric tracer within the marine boundary layer is investigated with sensitivity tests which unplug, in turn, the model physical parametrizations. Finally, upper-level forcings associated with the development of the tropopause fold are investigated in detail in a companion paper. [source] GPR microwave tomography for diagnostic analysis of archaeological sites: the case of a highway construction in Pontecagnano (Southern Italy)ARCHAEOLOGICAL PROSPECTION, Issue 3 2009R. Castaldo Abstract Interpretation of ground-penetrating radar (GPR) data usually involves data processing similar to that used for seismic data analysis, including also migration techniques. Alternatively, in the past few years, microwave tomographic approaches exploiting more accurate models of the electromagnetic scattering have gained interest, owing to their capability of providing accurate results and stable images. Within this framework, this paper deals with the application of a microwave tomography approach, based on the Born Approximation and working in the frequency domain. The case study is a survey performed during the realization of the third lane of the most important highway in southern Italy (the Salerno-Reggio Calabria, near Pontecagnano, Italy). It is shown that such an inversion approach produces well-focused images, from which buried structures can be more easily identified by comparison to traditional radar images. Moreover, the visualization of the reconstruction results is further enhanced through a three-dimensional volumetric rendering of the surveyed region, simply achieved by staggering the reconstructed GPR two-dimensional profiles. By means of this rendering it is possible to follow the spatial continuity of the buried structures in the subsurface thus obtaining a very effective geometrical characterization. The results are very useful in our case where, due to important civil engineering works, a fast diagnosis of the archaeological situation was needed. The quality of our GPR data modelling was confirmed by a test excavation, where a corner of a building and the eastern part of another house, with its courtyard, were found at the depth and horizontal position suggested by our interpretation. Copyright © 2009 John Wiley & Sons, Ltd. [source] X-ray analysis of bilirubin oxidase from Myrothecium verrucaria at 2.3,Å resolution using a twinned crystalACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 7 2010Kimihiko Mizutani Bilirubin oxidase (BOD), a multicopper oxidase found in Myrothecium verrucaria, catalyzes the oxidation of bilirubin to biliverdin. Oxygen is the electron acceptor and is reduced to water. BOD is used for diagnostic analysis of bilirubin in serum and has attracted considerable attention as an enzymatic catalyst for the cathode of biofuel cells that work under neutral conditions. Here, the crystal structure of BOD is reported for the first time. Blue bipyramid-shaped crystals of BOD obtained in 2-methyl-2,4-pentanediol (MPD) and ammonium sulfate solution were merohedrally twinned in space group P63. Structure determination was achieved by the single anomalous diffraction (SAD) method using the anomalous diffraction of Cu atoms and synchrotron radiation and twin refinement was performed in the resolution range 33,2.3,Å. The overall organization of BOD is almost the same as that of other multicopper oxidases: the protein is folded into three domains and a total of four copper-binding sites are found in domains 1 and 3. Although the four copper-binding sites were almost identical to those of other multicopper oxidases, the hydrophilic Asn residue (at the same position as a hydrophobic residue such as Leu in other multicopper oxidases) very close to the type I copper might contribute to the characteristically high redox potential of BOD. [source] |