Home About us Contact | |||
Diverse Cellular Functions (diverse + cellular_function)
Selected AbstractsMaspin controls mammary tumor cell migration through inhibiting Rac1 and Cdc42, but not the RhoA GTPaseCYTOSKELETON, Issue 5 2007Heidi Y. Shi Abstract Rac1 and Cdc42 are members of the Rho family of small GTPases that play essential roles in diverse cellular functions, including cell migration. The activities of these Rho family proteins are controlled by growth factor receptor activation and cell-ECM interactions. Here, we show that maspin, a well-documented tumor suppressor gene, also controls cell motility through inhibiting Rac1/Cdc42 activity. Using the GST-PAK and GST-Rho binding protein pull-down assays for GTP-bound Rac1, Cdc42, and RhoA, we showed that treatment of MDA-MB-231 tumor cells with recombinant maspin for a short time period significantly inhibited the activity of Rac1 and Cdc42, but not RhoA. The reactive site loop (RSL) within maspin protein is the functional domain involved in the inhibition. Maspin mutants with the RSL deleted or a point mutation in the RSL region lost their inhibitory activity. We further examined the ability of maspin to inhibit Rac1- and Cdc42-mediated signaling pathways and transcription factors. Treatment of MDA-MB-231 cells with maspin led to the inhibition of JNK kinase activity as assayed by immuno-kinase assays. In addition, the AP-1 transcription activity downstream of JNK kinase pathway was also reduced. Together, we have identified Rac1 and Cdc42 as the downstream targets that mediate the inhibition of mammary tumor cell migration by maspin. Cell Motil. Cytoskeleton 2007. © 2007 Wiley-Liss, Inc. [source] Physical characterization of plakophilin 1 reconstituted with and without zincFEBS JOURNAL, Issue 14 2000Ilse Hofmann Plakophilin 1 (PKP1) belongs to the arm -repeat protein family which is characterized by the presence of a conserved 42-amino-acid motif. Despite individual members of the family containing a similar type of structural domain, they exhibit diverse cellular functions. PKP1 is ubiquitously expressed in human tissues and, depending on the type of cell, found prominently in the karyoplasm and/or in desmosomes. In surface plasmon resonance detection experiments, we noticed that PKP1 specifically bound zinc but not calcium or magnesium. Therefore we have used circular dichroism spectroscopy, limited proteolysis, analytical ultracentrifugation, electron microscopy and dynamic light scattering to establish the physical properties of recombinant PKP1 depending on the presence or absence of zinc. The , helix content of PKP1 was considerably higher when reconstituted with zinc than without. By atomic absorption spectroscopy 7.3 atoms zinc were shown to be tightly associated with one molecule of wild-type PKP1. The zinc-reconstituted protein formed globular particles of 21.9 ± 8.4 nm diameter, as measured by electron microscopy after glycerol spraying/rotary metal shadowing. In parallel, the average sedimentation coefficient (s20,w) for zinc-containing PKP1 was 41S and its diffusion coefficient, as obtained by dynamic light scattering, 1.48 × 10,7 cm2·s,1. The molecular mass of 2.44 × 106 obtained from s and D yields an average stoichiometry of 30 for the PKP1 oligomer. In contrast, PKP1, reconstituted without zinc, contained no significant amount of zinc, sedimented with 4.6S, and was present in monomeric form as determined by sedimentation equilibrium centrifugation. [source] Schizosaccharomyces pombe cell division cycle under limited glucose requires Ssp1 kinase, the putative CaMKK, and Sds23, a PP2A-related phosphatase inhibitorGENES TO CELLS, Issue 5 2009Yuichiro Hanyu Calcium/calmodulin-dependent protein kinase (CaMK) is required for diverse cellular functions, and similar kinases exist in fungi. Although mammalian CaMK kinase (CaMKK) activates CaMK and also evolutionarily-conserved AMP-activated protein kinase (AMPK), CaMKK is yet to be established in yeast. We here report that the fission yeast Schizosaccharomyces pombe Ssp1 kinase, which controls G2/M transition and response to stress, is the putative CaMKK. Ssp1 has a CaM binding domain (CBD) and associates with 14-3-3 proteins as mammalian CaMKK does. Temperature-sensitive ssp1 mutants isolated are defective in the tolerance to limited glucose, and this tolerance requires the conserved stretch present between the kinase domain and CBD. Sds23, multi-copy suppressor for mutants defective in type 1 phosphatase and APC/cyclosome, also suppresses the ssp1 phenotype, and is required for the tolerance to limited glucose. We demonstrate that Sds23 binds to type 2A protein phosphatases (PP2A) and PP2A-related phosphatase Ppe1, and that Sds23 inhibits Ppe1 phosphatase activity. Ssp1 and Ppe1 thus seem to antagonize in utilizing limited glucose. We also show that Ppk9 and Ssp2 are the catalytic subunits of AMPK and AMPK-related kinases, respectively, which bind to common ,-(Amk2) and ,-(Cbs2) subunits. [source] Molecular analyses and identification of promising candidate genes for loci on mouse chromosome 1 affecting alcohol physical dependence and associated withdrawalGENES, BRAIN AND BEHAVIOR, Issue 5 2008D. L. Denmark We recently mapped quantitative trait loci (QTLs) with large effects on predisposition to physical dependence and associated withdrawal severity following chronic and acute alcohol exposure (Alcdp1/Alcw1) to a 1.1-Mb interval of mouse chromosome 1 syntenic with human chromosome 1q23.2-23.3. Here, we provide a detailed analysis of the genes within this interval and show that it contains 40 coding genes, 17 of which show validated genotype-dependent transcript expression and/or non-synonymous coding sequence variation that may underlie the influence of Alcdp1/Alcw1 on ethanol dependence and associated withdrawal. These high priority candidates are involved in diverse cellular functions including intracellular trafficking, oxidative homeostasis, mitochondrial respiration, and extracellular matrix dynamics, and indicate both established and novel aspects of the neurobiological response to ethanol. This work represents a substantial advancement toward identification of the gene(s) that underlies the phenotypic effects of Alcdp1/Alcw1. Additionally, a multitude of QTLs for a variety of complex traits, including diverse behavioral responses to ethanol, have been mapped in the vicinity of Alcdp1/Alcw1, and as many as four QTLs on human chromosome 1q have been implicated in human mapping studies for alcoholism and associated endophenotypes. Thus, our results will be primary to further efforts to identify genes involved in a wide variety of behavioral responses to alcohol and may directly facilitate progress in human alcoholism genetics. [source] Non-conventional signal transduction by type 1 interferons: The NF-,B pathwayJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2007Ziyun Du Abstract Type I interferons (IFNs) regulate diverse cellular functions by modulating the expression of IFN-stimulated genes (ISGs) through the activation of the well established signal transduction pathway of the Janus Kinase (JAK) and signal transducers and activators of transcription (STAT) proteins. Although the JAK,STAT signal transduction pathway is critical in mediating IFN's antiviral and antiproliferative activities, other signaling pathways are activated by IFNs and regulate cellular response to IFN. The NF-,B transcription factor regulates the expression of genes involved in cell survival and immune responses. We have identified a novel IFN mediated signal pathway that leads to NF-,B activation and demonstrate that a subset of ISGs that play key roles in cellular response to IFN is regulated by NF-,B. This review focuses on the IFN-induced NF-,B activation pathway and the role of NF-,B in ISG expression, antiviral activity and apoptosis, and the therapeutic application of IFN in cancer and infectious disease. J. Cell. Biochem. 102: 1087,1094, 2007. © 2007 Wiley-Liss, Inc. [source] Isoform- and subcellular fraction-specific differences in hippocampal 14-3-3 levels following experimentally evoked seizures and in human temporal lobe epilepsyJOURNAL OF NEUROCHEMISTRY, Issue 2 2006Clara K. Schindler Abstract 14-3-3 proteins are a family of signaling molecules involved in diverse cellular functions, which can mediate anti-apoptotic effects. Seizure-induced neuronal death may involve programmed (apoptotic) cell death pathways and is associated with a decline in brain 14-3-3 levels. Presently, we investigated the subcellular localization and effects of seizures on isoforms of 14-3-3 in rat hippocampus, and contrasted these to findings in human temporal lobe epilepsy (TLE). All brain isoforms of 14-3-3 were detected in the cytoplasmic compartment of rat hippocampus, while 14-3-3, and -, were also present in mitochondrial and microsome-enriched fractions. Focally evoked seizures in rats significantly reduced 14-3-3, levels within the microsome-enriched compartment at 4 h, with similar responses for 14-3-3,, while cytoplasm-localized 14-3-3,, -, and -, remained unchanged. Analysis of human autopsy control hippocampus revealed similar 14-3-3 isoform expression profiles. In TLE samples, the microsome-enriched fraction also showed differences, but here 14-3-3, and -, levels were higher than controls. TLE sample 14-3-3 isoform abundance within the cytoplasmic fraction was not different to controls. This study defines the subcellular localization of 14-3-3 isoforms in rat and human hippocampus and identifies the microsome-enriched fraction as the main site of altered 14-3-3 levels in response to acute prolonged and chronic recurrent seizures. [source] Conquering the complex world of human septins: implications for health and diseaseCLINICAL GENETICS, Issue 6 2010EA Peterson Peterson EA and Petty EM. Conquering the complex world of human septins: implications for health and disease. Septins are highly conserved filamentous proteins first characterized in budding yeast and subsequently identified in must eukaryotes. Septins can bind and hydrolyze GTP, which is intrinsically related to their formation of septin hexamers and functional protein interactions. The human septin family is composed of 14 loci, SEPT1-SEPT14, which encode dozens of different septin proteins. Their central GTPase and polybasic domain regions are highly conserved but they diverge in their N-terminus and/or C-terminus. The mechanism by which the different isoforms are generated is not yet well understood, but one can hypothesize that the use of different promoters and/or alternative splicing could give rise to these variants. Septins perform diverse cellular functions according to tissue expression and their interacting partners. Functions identified to date include cell division, chromosome segregation, protein scaffolding, cellular polarity, motility, membrane dynamics, vesicle trafficking, exocytosis, apoptosis, and DNA damage response. Their expression is tightly regulated to maintain proper filament assembly and normal cellular functions. Alterations of these proteins, by mutation or expression changes, have been associated with a variety of cancers and neurological diseases. The association of septins with cancer results from alterations of expression in solid tumors or translocations in leukemias [mixed lineage leukemia (MLL)]. Expression changes in septins have also been associated with neurological conditions such as Alzheimer's and Parkinson's disease, as well as retinopathies, hepatitis C, spermatogenesis and Listeria infection. Pathogenic mutations of SEPT9 were identified in the autosomal dominant neurological disorder hereditary neuralgic amyotrophy (HNA). Human septin research over the past decade has established their importance in cell biology and human disease. Further functional characterization of septins is crucial to our understanding of their possible diagnostic, prognostic, and therapeutic applications. [source] |